
Package: immunarch (via r-universe)
August 22, 2024

Type Package

Title Bioinformatics Analysis of T-Cell and B-Cell Immune Repertoires

Version 0.9.1

Contact support@immunomind.io

Description A comprehensive framework for bioinformatics exploratory
analysis of bulk and single-cell T-cell receptor and antibody
repertoires. It provides seamless data loading, analysis and
visualisation for AIRR (Adaptive Immune Receptor Repertoire)
data, both bulk immunosequencing (RepSeq) and single-cell
sequencing (scRNAseq). Immunarch implements most of the widely
used AIRR analysis methods, such as: clonality analysis,
estimation of repertoire similarities in distribution of
clonotypes and gene segments, repertoire diversity analysis,
annotation of clonotypes using external immune receptor
databases and clonotype tracking in vaccination and cancer
studies. A successor to our previously published 'tcR'
immunoinformatics package (Nazarov 2015)
<doi:10.1186/s12859-015-0613-1>.

License Apache License (== 2.0)

URL https://immunarch.com/, https://github.com/immunomind/immunarch

BugReports https://github.com/immunomind/immunarch/issues

Imports factoextra (>= 1.0.4), fpc, UpSetR (>= 1.4.0), pheatmap (>=
1.0.12), ggrepel (>= 0.8.0), reshape2 (>= 1.4.2), circlize,
MASS (>= 7.3), Rtsne (>= 0.15), readxl (>= 1.3.1), shiny (>=
1.4.0), shinythemes, airr, ggseqlogo, ggalluvial (>= 0.10.0),
Rcpp (>= 1.0), magrittr, methods, scales, ggpubr (>= 0.2),
rlang (>= 0.4), plyr, purrr, stringdist, jsonlite, readr,
stringr, tibble, tidyselect, tidyr, igraph, ape, doParallel,
rlist, utils, glue, phangorn, uuid, stringi, ggraph

Depends R (>= 4.0.0), ggplot2 (>= 3.1.0), dplyr (>= 0.8.0), dtplyr (>=
1.0.0), data.table (>= 1.12.6), patchwork

LinkingTo Rcpp

1

https://doi.org/10.1186/s12859-015-0613-1
https://immunarch.com/
https://github.com/immunomind/immunarch
https://github.com/immunomind/immunarch/issues

2 Contents

Suggests knitr (>= 1.8), roxygen2 (>= 3.0.0), testthat (>= 2.1.0),
pkgdown (>= 0.1.0), assertthat, rmarkdown

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.1

LazyData true

LazyDataCompression xz

Repository https://immunomind.r-universe.dev

RemoteUrl https://github.com/immunomind/immunarch

RemoteRef HEAD

RemoteSha 0b6544a101e9f42ee1bf6a5f14cbd234147e18ad

Contents
.quant_column_choice . 4
aa_properties . 4
aa_table . 5
add_class . 5
apply_symm . 6
bcrdata . 6
bunch_translate . 7
check_distribution . 8
coding . 9
dbAnnotate . 10
dbLoad . 11
entropy . 12
fixVis . 13
geneUsage . 14
geneUsageAnalysis . 15
gene_segments . 16
gene_stats . 16
getKmers . 17
group_from_metadata . 18
has_class . 18
immdata . 19
immunr_data_format . 19
immunr_hclust . 20
immunr_pca . 21
inc_overlap . 22
matrixdiagcopy . 23
public_matrix . 24
pubRep . 25
pubRepApply . 26
pubRepFilter . 27
pubRepStatistics . 27

Contents 3

repAlignLineage . 28
repClonalFamily . 29
repClonality . 30
repDiversity . 32
repExplore . 35
repFilter . 37
repGermline . 38
repLoad . 39
repOverlap . 41
repOverlapAnalysis . 44
repSample . 45
repSave . 46
repSomaticHypermutation . 47
scdata . 48
select_barcodes . 49
select_clusters . 50
seqCluster . 51
seqDist . 52
set_pb . 53
spectratype . 54
split_to_kmers . 55
switch_type . 56
top . 56
trackClonotypes . 57
vis . 59
vis.clonal_family . 61
vis.clonal_family_tree . 62
vis.immunr_chao1 . 63
vis.immunr_clonal_prop . 64
vis.immunr_dynamics . 66
vis.immunr_exp_vol . 67
vis.immunr_gene_usage . 69
vis.immunr_hclust . 70
vis.immunr_inc_overlap . 71
vis.immunr_kmeans . 72
vis.immunr_kmer_table . 73
vis.immunr_mds . 74
vis.immunr_ov_matrix . 75
vis.immunr_public_repertoire . 76
vis.immunr_public_statistics . 77
vis.step_failure_ignored . 78
vis_bar . 78
vis_box . 80
vis_circos . 81
vis_heatmap . 82
vis_heatmap2 . 84
vis_hist . 85
vis_immunr_kmer_profile_main . 87

4 aa_properties

vis_public_clonotypes . 87
vis_public_frequencies . 89
vis_textlogo . 90

Index 91

.quant_column_choice Get a column’s name using the input alias

Description

Get a column’s name using the input alias

Usage

.quant_column_choice(x)

Arguments

x Character vector of length 1.

Value

A string with the column name.

Developer Examples

immunarch:::.quant_column_choice("count") immunarch:::.quant_column_choice("freq")

aa_properties Tables with amino acid properties

Description

Tables with amino acid properties

aa_table 5

aa_table Amino acid / codon table

Description

Amino acid / codon table

Usage

AA_TABLE

Format

An object of class table of length 65.

add_class Add a new class attribute

Description

Add a new class attribute

Usage

add_class(.obj, .class)

Arguments

.obj R object.

.class String with the desired class name.

Value

Input object with additional class .class.

Developer Examples

tmp <- "abc" class(tmp) tmp <- immunarch:::add_class(tmp, "new_class") class(tmp)

6 bcrdata

apply_symm Apply function to each pair of data frames from a list.

Description

Apply the given function to every pair in the given datalist. Function either symmetrical (i.e.
fun(x,y) == fun(y,x)) or assymmetrical (i.e. fun(x,y) != fun(y,x)).

Usage

apply_symm(.datalist, .fun, ..., .diag = NA, .verbose = TRUE)

apply_asymm(.datalist, .fun, ..., .diag = NA, .verbose = TRUE)

Arguments

.datalist List with some data.frames.

.fun Function to apply, which return basic class value.

... Arguments passsed to .fun.

.diag Either NA for NA or something else != NULL for .fun(x,x).

.verbose if TRUE then output a progress bar.

Value

Matrix with values M[i,j] = fun(datalist[i], datalist[j])

Examples

data(immdata)
apply_symm(immdata$data, function(x, y) {

nrow(x) + nrow(y)
})

bcrdata BCR dataset

Description

A dataset with BCR data for testing and examplatory purposes.

Usage

bcrdata

bunch_translate 7

Format

A list of two elements. The first element ("data") is a list of 1 element named "full_clones" that
contains immune repertoire data frame. The second element ("meta") is empty metadata table.

data List of immune repertoire data frames.

meta Metadata ...

bunch_translate Nucleotide to amino acid sequence translation

Description

Nucleotide to amino acid sequence translation

Usage

bunch_translate(.seq, .two.way = TRUE, .ignore.n = FALSE)

Arguments

.seq Vector or list of strings.

.two.way Logical. If TRUE (default) then translate from the both ends (like MIXCR).

.ignore.n Logical. If FALSE (default) then return NA for sequences that have N, else
parse triplets with N as ~

Value

Character vector of translated input sequences.

Examples

data(immdata)
head(bunch_translate(immdata$data[[1]]$CDR3.nt))

8 check_distribution

check_distribution Check and normalise distributions

Description

Check if the given .data is a distribution and normalise it if necessary with an optional Laplace
correction.

Usage

check_distribution(
.data,
.do.norm = NA,
.laplace = 1,
.na.val = 0,
.warn.zero = FALSE,
.warn.sum = TRUE

)

Arguments

.data Numeric vector of values.

.do.norm One of the three values - NA, TRUE or FALSE. If NA then checks for distrubu-
tion (sum(.data) == 1) and normalises if needed with the given laplace correction
value. if TRUE then does the normalisation and laplace correction. If FALSE
then doesn’t do either normalisaton or laplace correction.

.laplace Value for the laplace correction.

.na.val Replace all NAs with this value.

.warn.zero if TRUE then the function checks if in the resulted vector (after normalisation)
are any zeros, and prints a warning message if there are some.

.warn.sum if TRUE then the function checks if the sum of resulted vector (after normalisa-
tion) is equal to one, and prints a warning message if not.

Value

Numeric vector.

Developer Examples

immunarch:::check_distribution(c(1, 2, 3)) immunarch:::check_distribution(c(1, 2, 3), TRUE) im-
munarch:::check_distribution(c(1, 2, 3), FALSE)

coding 9

coding Filter out coding and non-coding clonotype sequences

Description

Filter out clonotypes with non-coding, coding, in-frame or out-of-frame CDR3 sequences:

‘coding()‘ - remove all non-coding sequences (i.e., remove all sequences with stop codons and
frame shifts);

‘noncoding()‘ - remove all coding sequences (i.e., leave sequences with stop codons and frame
shifts only);

‘inframes()‘ - remove all out-of-frame sequences (i.e., remove all sequences with frame shifts);

‘outofframes()‘ - remove all in-frame sequences (i.e., leave sequences with frame shifts only).

Note: the function will remove all clonotypes sequences with NAs in the CDR3 amino acid column.

Usage

coding(.data)

noncoding(.data)

inframes(.data)

outofframes(.data)

Arguments

.data The data to be processed. Can be data.frame, data.table, or a list of these objects.
Every object must have columns in the immunarch compatible format. immu-
narch_data_format
Competent users may provide advanced data representations: DBI database con-
nections, Apache Spark DataFrame from copy_to or a list of these objects. They
are supported with the same limitations as basic objects.
Note: each connection must represent a separate repertoire.

Value

Filtered data frame.

Examples

data(immdata)
immdata_cod <- coding(immdata$data)
immdata_cod1 <- coding(immdata$data[[1]])

10 dbAnnotate

dbAnnotate Annotate clonotypes in immune repertoires using clonotype databases
such as VDJDB and MCPAS

Description

Annotate clonotypes using immune receptor databases with known condition-associated receptors.
Before using this function, you need to download database files first. For more details see the
tutorial https://immunarch.com/articles/web_only/v11_db.html.

Usage

dbAnnotate(.data, .db, .data.col, .db.col)

Arguments

.data The data to process. It can be a data.frame, a data.table, or a list of these objects.
Every object must have columns in the immunarch compatible format. immu-
narch_data_format
Competent users may provide advanced data representations: DBI database con-
nections, Apache Spark DataFrame from copy_to or a list of these objects. They
are supported with the same limitations as basic objects.
Note: each connection must represent a separate repertoire.

.db A data frame or a data table with an immune receptor database. See dbLoad on
how to load databases into R.

.data.col Character vector. Vector of columns in the input repertoires to use for clonotype
search. E.g., ‘"CDR3.aa"‘ or ‘c("CDR3.aa", "V.name")‘.

.db.col Character vector. Vector of columns in the database to use for clonotype search.
The order must match the order of ".data.col". E.g., if ".data.col" is ‘c("CDR3.aa",
"V.name")‘, then ".db.col" must have the exact order of columns. i.e., the first
column must correspond to CDR3 amino acid sequences, and the second column
must correspond to V gene segment names.

Value

Data frame with input sequences and counts or proportions for each of the input repertoire.

Examples

data(immdata)

#' # Example file path
file_path <- paste0(system.file(package = "immunarch"), "/extdata/db/vdjdb.example.txt")

Load the database with human-only TRB-only receptors for all known antigens
db <- dbLoad(file_path, "vdjdb", "HomoSapiens", "TRB")

https://immunarch.com/articles/web_only/v11_db.html

dbLoad 11

res <- dbAnnotate(immdata$data, db, "CDR3.aa", "cdr3")
res

dbLoad Load clonotype databases such as VDJDB and McPAS into the R
workspace

Description

The function automatically detects the database format and loads it into R. Additionally, the function
provides a general query interface to databases that allows filtering by species, chain types (i.e.,
locus) and pathology (i.e., antigen species).

Currently we support three popular databases:

VDJDB - https://github.com/antigenomics/vdjdb-db

McPAS-TCR - http://friedmanlab.weizmann.ac.il/McPAS-TCR/

TBAdb from PIRD - https://db.cngb.org/pird/

Usage

dbLoad(.path, .db, .species = NA, .chain = NA, .pathology = NA)

Arguments

.path Character. A path to the database file, e.g., "/Users/researcher/Downloads/McPAS-
TCR.csv".

.db Character. A database type: either "vdjdb", "vdjdb-search", "mcpas" or "tbadb".
"vdjdb" for VDJDB; "vdjdb-search" for search table obtained from the web in-
terface of VDJDB; "mcpas" for McPAS-TCR; "tbadb" for PIRD TBAdb.

.species Character. A string or a vector of strings specifying which species need to be
in the database, e.g., "HomoSapiens". Pass NA (by default) to load all available
species.

.chain Character. A string or a vector of strings specifying which chains need to be in
the database, e.g., "TRB". Pass NA (by default) to load all available chains.

.pathology Character. A string or a vector of strings specifying which disease, virus, bac-
teria or any condition needs to be in the database, e.g., "CMV". Pass NA (by
default) to load all available conditions.

Value

Data frame with the input database records.

https://github.com/antigenomics/vdjdb-db
http://friedmanlab.weizmann.ac.il/McPAS-TCR/
https://db.cngb.org/pird/

12 entropy

Examples

Example file path
file_path <- paste0(system.file(package = "immunarch"), "/extdata/db/vdjdb.example.txt")

Load the database with human-only TRB-only receptors for all known antigens
db <- dbLoad(file_path, "vdjdb", "HomoSapiens", "TRB")
db

entropy Information measures

Description

Compute information-based estimates and distances.

Usage

entropy(.data, .base = 2, .norm = FALSE, .do.norm = NA, .laplace = 1e-12)

kl_div(.alpha, .beta, .base = 2, .do.norm = NA, .laplace = 1e-12)

js_div(.alpha, .beta, .base = 2, .do.norm = NA, .laplace = 1e-12, .norm.entropy = FALSE)

cross_entropy(.alpha, .beta, .base = 2, .do.norm = NA,
.laplace = 1e-12, .norm.entropy = FALSE)

Arguments

.data Numeric vector. Any distribution.

.base Numeric. A base of logarithm.

.norm Logical. If TRUE then normalises the entropy by the maximal value of the
entropy.

.do.norm If TRUE then normalises the input distributions to make them sum up to 1.

.laplace Numeric. A value for the laplace correction.

.alpha Numeric vector. A distribution of some random value.

.beta Numeric vector. A distribution of some random value.

.norm.entropy Logical. If TRUE then normalises the resulting value by the average entropy of
input distributions.

Value

A numeric value.

fixVis 13

Examples

P <- abs(rnorm(10))
Q <- abs(rnorm(10))
entropy(P)
kl_div(P, Q)
js_div(P, Q)
cross_entropy(P, Q)

fixVis Manipulate ggplot plots and create publication-ready plots

Description

The fixVis is a built-in software tool for the manipulation of plots, such as adjusting title text font
and size, axes, and more. It is a powerful tool designed to produce publication-ready plots with
minimal amount of coding.

Usage

fixVis(.plot = NA)

Arguments

.plot A ggplot2 plot.

Value

No return value because it is an application.

Examples

if (interactive()) {
Compute gene usage, visualise it and tweak via fixVis
data(immdata) # load test data
gu <- geneUsage(immdata$data)
p <- vis(gu)
fixVis(p)

}

14 geneUsage

geneUsage Main function for estimation of V-gene and J-gene statistics

Description

An utility function to analyse the immune receptor gene usage (IGHD, IGHJ, IDHV, IGIJ, IGKJ,
IGKV, IGLJ, IGLV, TRAJ, TRAV, TRBD, etc.) and statistics. For gene details run gene_stats().

Usage

geneUsage(
.data,
.gene = c("hs.trbv", "HomoSapiens.TRBJ", "macmul.IGHV"),
.quant = c(NA, "count"),
.ambig = c("inc", "exc", "maj"),
.type = c("segment", "allele", "family"),
.norm = FALSE

)

Arguments

.data The data to be processed. Can be data.frame, data.table, or a list of these objects.
Every object must have columns in the immunarch compatible format. immu-
narch_data_format
Competent users may provide advanced data representations: DBI database con-
nections, Apache Spark DataFrame from copy_to or a list of these objects. They
are supported with the same limitations as basic objects.
Note: each connection must represent a separate repertoire.

.gene A character vector of length one with the name of the gene you want to analyse
of the specific species. If you provide a vector of different length, only the first
element will be used. The string should also contain the species of interest,
for example, valid ".gene" arguments are "hs.trbv", "HomoSapiens.TRBJ" or
"macmul.IGHV". For details run gene_stats().

.quant Selects the column with data to evaluate. Pass NA if you want to compute gene
statistics at the clonotype level without re-weighting. Pass "count" to use the
"Clones" column to weight genes by abundance of their corresponding clono-
types.

.ambig An option to handle ambiguous gene assigments, e.g., "TRAV1,TRAV2".
- Pass "inc" to include all possible gene segments, so "TRAV1,TRAV2" is counted
as a different gene segment.
- Pass "exc" to exclude all ambiguous gene assignments, so "TRAV1,TRAV2"
is excluded from the resultant gene table.
We recommend to turn it on by passing "inc" (turned on by default). You can
exclude data for the cases where there is no clear match for gene, include it for
every supplied gene, or pick only first from the set. Set it to "exc", "inc" or
"maj", respectively.

geneUsageAnalysis 15

.type Set the type of data to evaluate: "segment", "allele", or "family".

.norm If TRUE then return proportions of genes. If FALSE then return counts of genes.

Value

A data frame with rows corresponding to gene segments and columns corresponding to the input
samples.

Examples

data(immdata)
gu <- geneUsage(immdata$data)
vis(gu)

geneUsageAnalysis Post-analysis of V-gene and J-gene statistics: PCA, clustering, etc.

Description

The geneUsageAnalysis function deploys several data analysis methods, including PCA, multi-
dimensional scaling, Jensen-Shannon divergence, k-means, hierarchical clustering, DBscan, and
different correlation coefficients.

Usage

geneUsageAnalysis(
.data,
.method = c("js+hclust", "pca+kmeans", "anova", "js+pca+kmeans"),
.base = 2,
.norm.entropy = FALSE,
.cor = c("pearson", "kendall", "spearman"),
.do.norm = TRUE,
.laplace = 1e-12,
.verbose = TRUE,
.k = 2,
.eps = 0.01,
.perp = 1,
.theta = 0.1

)

Arguments

.data The geneUsageAnalysis function runs on the output from geneUsage.

.method A string that defines the type of analysis to perform. Can be "pca", "mds",
"js", "kmeans", "hclust", "dbscan" or "cor" if you want to calculate correlation
coefficient. In the latter case you have to provide .cor argument.

16 gene_stats

.base A numerical value that defines the logarithm base for Jensen-Shannon diver-
gence.

.norm.entropy A logical value. Set TRUE to normalise your data if you haven’t done it already.

.cor A string that defines the correlation coefficient for analysis. Can be "pearson",
"kendall" or "spearman".

.do.norm A logical value. If TRUE it forces Laplace smoothing, if NA it checks if smooth-
ing is necessary, if FALSE does nothing.

.laplace The numeric value, which is used as a pseudocount for Laplace smoothing.

.verbose A logical value.

.k The number of clusters to create, passed as k to hcut or as centers to kmeans.

.eps A numerical value, DBscan epsylon parameter, see immunr_dbscan.

.perp A numerical value, t-SNE perplexity, see immunr_tsne.

.theta A numerical value, t-SNE theta parameter, see immunr_tsne.

Value

Depends on the last element in the .method string. See immunr_tsne for more info.

Examples

data(immdata)
gu <- geneUsage(immdata$data, .norm = TRUE)
geneUsageAnalysis(gu, "js+hclust", .verbose = FALSE) %>% vis()

gene_segments Gene segments table

Description

Gene segments table

gene_stats WIP

Description

WIP

Usage

gene_stats()

getKmers 17

Value

gene_stats returns all segment gene statistics

Examples

gene_stats()
get_genes("hs.trbv", "segment")

getKmers Calculate the k-mer statistics of immune repertoires

Description

Calculate the k-mer statistics of immune repertoires

Usage

getKmers(.data, .k, .col = c("aa", "nt"), .coding = TRUE)

Arguments

.data The data to be processed. Can be data.frame, data.table, or a list of these objects.
Every object must have columns in the immunarch compatible format. immu-
narch_data_format
Competent users may provide advanced data representations: DBI database con-
nections, Apache Spark DataFrame from copy_to or a list of these objects. They
are supported with the same limitations as basic objects.
Note: each connection must represent a separate repertoire.

.k Integer. Length of k-mers.

.col Character. Which column to use, pass "aa" (by default) for CDR3 amino acid
sequence, pass "nt" for CDR3 nucleotide sequences.

.coding Logical. If TRUE (by default) then removes all non-coding sequences from
input data first.

Value

Data frame with two columns (k-mers and their counts).

Examples

data(immdata)
kmers <- getKmers(immdata$data[[1]], 5)
kmers %>% vis()

18 has_class

group_from_metadata Get a character vector of samples’ groups from the input metadata file

Description

Get a character vector of samples’ groups from the input metadata file

Usage

group_from_metadata(.by, .metadata, .sep = "; ")

Arguments

.by Character vector. Specify a column or columns in the input metadata to group
by.

.metadata Metadata object.

.sep Character vector. Defines a separator between groups if more than one group
passed in .by.

Value

Character vector with group names.

Developer Examples

immunarch:::group_from_metadata("Status", data.frame(Status = c("A", "A", "B", "B", "C")))

has_class Check for the specific class

Description

A function to check if an input object has a specific class name.

Usage

has_class(.data, .class)

Arguments

.data Any R object.

.class Character vector. Specifies a class name to check against.

Value

Logical value.

immdata 19

Developer Examples

tmp <- "abc" immunarch:::has_class(tmp, "new_class") tmp <- immunarch:::add_class(tmp, "new_class")
immunarch:::has_class(tmp, "new_class")

immdata Single chain immune repertoire dataset

Description

A dataset with single chain TCR data for testing and examplatory purposes.

Usage

immdata

Format

A list of two elements. The first element ("data") is a list with data frames with clonotype tables.
The second element ("meta") is a metadata table.

data List of immune repertoire data frames.

meta Metadata ...

immunr_data_format Specification of the data format used by immunarch dataframes

Description

- "Clones" - number of barcodes (events, UMIs) or reads;

- "Proportion" - proportion of barcodes (events, UMIs) or reads;

- "CDR3.nt" - CDR3 nucleotide sequence;

- "CDR3.aa" - CDR3 amino acid sequence;

- "V.name" - names of aligned Variable gene segments;

- "D.name" - names of aligned Diversity gene segments or NA;

- "J.name" - names of aligned Joining gene segments;

- "V.end" - last positions of aligned V gene segments (1-based);

- "D.start" - positions of D’5 end of aligned D gene segments (1-based);

- "D.end" - positions of D’3 end of aligned D gene segments (1-based);

- "J.start" - first positions of aligned J gene segments (1-based);

- "VJ.ins" - number of inserted nucleotides (N-nucleotides) at V-J junction (-1 for receptors with
VDJ recombination);

20 immunr_hclust

- "VD.ins" - number of inserted nucleotides (N-nucleotides) at V-D junction (-1 for receptors with
VJ recombination);

- "DJ.ins" - number of inserted nucleotides (N-nucleotides) at D-J junction (-1 for receptors with
VJ recombination);

- "Sequence" - full nucleotide sequence.

immunr_hclust Clustering of objects or distance matrices

Description

Clusters the data with one of the following methods:

- immunr_hclust clusters the data using the hierarchical clustering from hcut;

- immunr_kmeans clusters the data using the K-means algorithm from kmeans;

- immunr_dbscan clusters the data using the DBSCAN algorithm from dbscan.

Usage

immunr_hclust(.data, .k = 2, .k.max = nrow(.data) - 1, .method = "complete", .dist = TRUE)

immunr_kmeans(.data, .k = 2, .k.max = as.integer(sqrt(nrow(.data))) + 1,
.method = c("silhouette", "gap_stat"))

immunr_dbscan(.data, .eps, .dist = TRUE)

Arguments

.data Matrix or data frame with features, distance matrix or output from repOverlap-
Analysis or geneUsageAnalysis functions.

.k The number of clusters to create, defined as k to hcut or as centers to kmeans.

.k.max Limits the maximum number of clusters. It is passed as k.max to fviz_nbclust
for immunr_hclust and immunr_kmeans.

.method Passed to hcut or as fviz_nbclust.
In case of hcut the agglomeration method is going to be used (argument hc_method).
In case of fviz_nbclust it is the method to be used for estimating the optimal
number of clusters (argument method).

.dist If TRUE then ".data" is expected to be a distance matrix. If FALSE then the
euclidean distance is computed for the input objects.

.eps Local radius for expanding clusters, minimal distance between points to expand
clusters. Passed as eps to dbscan.

immunr_pca 21

Value

immunr_hclust - list with two elements. The first element is an output from hcut. The second
element is an output from fviz_nbclust

immunr_kmeans - list with three elements. The first element is an output from kmeans. The second
element is an output from fviz_nbclust. The third element is the input dataset .data.

immunr_dbscan - list with two elements. The first element is an output from dbscan. The second
element is the input dataset .data.

Examples

data(immdata)
gu <- geneUsage(immdata$data, .norm = TRUE)
immunr_hclust(t(as.matrix(gu[, -1])), .dist = FALSE)

gu[is.na(gu)] <- 0
immunr_kmeans(t(as.matrix(gu[, -1])))

immunr_pca Dimensionality reduction

Description

Collects a set of principal variables, reducing the number of not important variables to analyse.
Dimensionality reduction makes data analysis algorithms work faster and sometimes more accurate,
since it also reduces noise in the data. Currently available methods are:

- immunr_pca performs PCA (Principal Component Analysis) using prcomp;

- immunr_mds performs MDS (Multi-Dimensional Scaling) using isoMDS;

- immunr_tsne performs tSNE (t-Distributed Stochastic Neighbour Embedding) using Rtsne.

Usage

immunr_pca(.data, .scale = default_scale_fun, .raw = TRUE, .orig = FALSE, .dist = FALSE)

immunr_mds(.data, .scale = default_scale_fun, .raw = TRUE, .orig = FALSE, .dist = TRUE)

immunr_tsne(.data, .perp = 1, .dist = TRUE, ...)

Arguments

.data A matrix or a data frame with features, distance matrix or output from repOver-
lapAnalysis or geneUsageAnalysis functions.

.scale A function to apply to your data before passing it to any of dimensionality re-
duction algorithms. There is no scaling by default.

.raw If TRUE then returns the non-processed output from dimensionality reduction
algorithms. Pass FALSE if you want to visualise results.

22 inc_overlap

.orig If TRUE then returns the original result from algorithms. Pass FALSE if you
want to visualise results.

.dist If TRUE then assumes that ".data" is a distance matrix.

.perp The perplexity parameter for Rtsne. Sepcifies the number of neighbours each
data point must have in the resulting plot.

... Other parameters passed to Rtsne.

Value

immunr_pca - an output from prcomp.

immunr_mds - an output from isoMDS.

immunr_tsne - an output from Rtsne.

See Also

vis.immunr_pca for visualisations.

Examples

data(immdata)
gu <- geneUsage(immdata$data)
gu[is.na(gu)] <- 0
gu <- t(as.matrix(gu[, -1]))
immunr_pca(gu)
immunr_mds(dist(gu))
immunr_tsne(dist(gu))

inc_overlap Incremental counting of repertoire similarity

Description

For reference please look up https://www.pnas.org/content/111/16/5980 (Fig. 4).

Usage

inc_overlap(
.data,
.fun,
.step = 1000,
.n.steps = 10,
.downsample = FALSE,
.bootstrap = NA,
.verbose.inc = TRUE,
...

)

matrixdiagcopy 23

Arguments

.data The data to be processed. Can be data.frame, data.table, or a list of these objects.
Every object must have columns in the immunarch compatible format. immu-
narch_data_format
Competent users may provide advanced data representations: DBI database con-
nections, Apache Spark DataFrame from copy_to or a list of these objects. They
are supported with the same limitations as basic objects.
Note: each connection must represent a separate repertoire.

.fun Function to compute overlaps. e.g., morisita_index.

.step Either an integer or a numeric vector.
In the first case, the integer defines the step of incremental overlap.
In the second case, the vector encodes all repertoire sampling depths.

.n.steps Integer. Number of steps if .step is a single integer. Skipped if ".step" is a
numeric vector.

.downsample If TRUE then performs downsampling to N clonotypes at each step instead of
choosing the top N clonotypes.

.bootstrap Set NA to turn off any bootstrapping, set a number to perform bootstrapping
with this number of tries.

.verbose.inc Logical. If TRUE then shows the output from the computation process.

... Other arguments passed to .fun.

Value

List with overlap matrices.

Examples

data(immdata)
ov <- repOverlap(immdata$data, "inc+overlap", .step = 100, .verbose.inc = FALSE, .verbose = FALSE)
vis(ov)

matrixdiagcopy Copy the upper matrix triangle to the lower one

Description

Copy the upper matrix triangle to the lower one

Usage

matrixdiagcopy(.mat)

Arguments

.mat Matrix.

24 public_matrix

Value

Matrix with its upper tri part copied to the lower tri part.

Developer Examples

mat <- matrix(0, 3, 3) mat mat[1, 3] <- 1 mat <- immunarch:::matrixdiagcopy(mat) mat

public_matrix Get a matrix with public clonotype frequencies

Description

Get a matrix with public clonotype frequencies

Usage

public_matrix(.data)

Arguments

.data Public repertoire, an output from pubRep.

Value

Matrix with per-sample clonotype counts / proportions only.

Examples

data(immdata)
immdata$data <- lapply(immdata$data, head, 2000)
pr <- pubRep(immdata$data, .verbose = FALSE)
pr.mat <- public_matrix(pr)
dim(pr.mat)
head(pr.mat)

pubRep 25

pubRep Create a repertoire of public clonotypes

Description

Create a repertoire of public clonotypes

Usage

pubRep(
.data,
.col = "aa+v",
.quant = c("count", "prop"),
.coding = TRUE,
.min.samples = 1,
.max.samples = NA,
.verbose = TRUE

)

Arguments

.data The data to be processed. Can be data.frame, data.table, or a list of these objects.
Every object must have columns in the immunarch compatible format. immu-
narch_data_format
Competent users may provide advanced data representations: DBI database con-
nections, Apache Spark DataFrame from copy_to or a list of these objects. They
are supported with the same limitations as basic objects.
Note: each connection must represent a separate repertoire.

.col A string that specifies the column(s) to be processed. Outputs one of the follow-
ing strings, separated by the plus sign: "nt" for nucleotide sequences, "aa" for
amino acid sequences, "v" for V gene segments, "j" for J gene segments. E.g.,
pass "aa+v" to compute overlaps on CDR3 amino acid sequences paired with
V gene segments, i.e., in this case a unique clonotype is a pair of CDR3 amino
acid and V gene segment.

.quant A string that specifies the column to be processed. Set "count" to see public
clonotype sharing with the number of clones, set "prop" to see proportions.

.coding Logical. If TRUE then preprocesses the data to filter out non-coding sequences.

.min.samples Integer. A minimal number of samples a clonotype must have to be included in
the public repertoire table.

.max.samples Integer. A maxminal number of samples a clonotype must have to be included
in the public repertoire table. Set NA (by default) to have the maximal amount
of samples.

.verbose Logical. If TRUE then outputs the progress.

26 pubRepApply

Value

Data table with columns for:

- Clonotypes (e.g., CDR3 sequence, or two columns for CDR3 sequence and V gene)

- Incidence of clonotypes

- Per-sample proportions or counts

Examples

Subset the data to make the example faster to run
immdata$data <- lapply(immdata$data, head, 2000)
pr <- pubRep(immdata$data, .verbose = FALSE)
vis(pr, "clonotypes", 1, 2)

pubRepApply Apply transformations to public repertoires

Description

Work In Progress

Usage

pubRepApply(.pr1, .pr2, .fun = function(x) log10(x[1])/log10(x[2]))

Arguments

.pr1 First public repertoire.

.pr2 Second public repertoire.

.fun A function to apply to pairs of frequencies of same clonotypes from "pr1" and
"pr2". By default - log(X) / log(Y) where X,Y - frequencies of the same clono-
type, found in both public repertoires.

Value

Work in progress.

Examples

data(immdata)
immdata$data <- lapply(immdata$data, head, 2000)
pr <- pubRep(immdata$data, .verbose = FALSE)
pr1 <- pubRepFilter(pr, immdata$meta, .by = c(Status = "MS"))
pr2 <- pubRepFilter(pr, immdata$meta, .by = c(Status = "C"))
prapp <- pubRepApply(pr1, pr2)
head(prapp)

pubRepFilter 27

pubRepFilter Filter out clonotypes from public repertoires

Description

Filter our clonotypes with low incidence in a specific group.

Usage

pubRepFilter(.pr, .meta, .by, .min.samples = 1)

Arguments

.pr Public repertoires, an output from pubRep.

.meta Metadata file.

.by Named character vector. Names of the group to filter by.

.min.samples Integer. Filters out clonotypes with the number of samples below than this num-
ber.

Value

Data frame with filtered clonotypes.

Examples

data(immdata)
immdata$data <- lapply(immdata$data, head, 2000)
pr <- pubRep(immdata$data, .verbose = FALSE)
pr1 <- pubRepFilter(pr, immdata$meta, .by = c(Status = "MS"))
head(pr1)

pubRepStatistics Statistics of number of public clonotypes for each possible combina-
tions of repertoires

Description

Statistics of number of public clonotypes for each possible combinations of repertoires

Usage

pubRepStatistics(.data, .by = NA, .meta = NA)

28 repAlignLineage

Arguments

.data Public repertoire, an output from the pubRep function.

.by Work in Progress.

.meta Work in Progress.

Value

Data frame with incidence statistics per sample.

Examples

data(immdata)
immdata$data <- lapply(immdata$data, head, 2000)
pr <- pubRep(immdata$data, .verbose = FALSE)
pubRepStatistics(pr) %>% vis()

repAlignLineage Aligns all sequences incliding germline within each clonal lineage
within each cluster

Description

This function aligns all sequences (incliding germline) that belong to one clonal lineage and one
cluster. After clustering and building the clonal lineage and germline, the next step is to analyze
the degree of mutation and maturity of each clonal lineage. This allows for finding high mature
cells and cells with a large number of offspring. The phylogenetic analysis will find mutations that
increase the affinity of BCR. Making alignment of the sequence is the first step towards sequence
analysis including BCR.

Usage

repAlignLineage(.data, .min_lineage_sequences, .prepare_threads, .align_threads, .nofail)

Arguments

.data The data to be processed. Can be data.frame, data.table or a list of these objects.

.min_lineage_sequences

If number of sequences in the same clonal lineage and the same cluster (not
including germline) is lower than this threshold, this group of sequences will be
filtered out from the dataframe; so only large enough lineages will be included.

.prepare_threads

Number of threads to prepare results table. Please note that high number can
cause heavy memory usage!

repClonalFamily 29

.align_threads Number of threads for lineage alignment.
It must have columns in the immunarch compatible format immunarch_data_format,
and also must contain ’Cluster’ column, which is added by seqCluster() func-
tion, and ’Germline.sequence’ column, which is added by repGermline() func-
tion.

.nofail Will return NA instead of stopping if Clustal W is not installed. Used to avoid
raising errors in examples on computers where Clustal W is not installed.

Value

Dataframe or list of dataframes (if input is a list with multiple samples). The dataframe has these
columns: * Cluster: cluster name * Germline: germline sequence * Alignment: DNAbin object
with alignment * Sequences: nested dataframe containing all sequences for this combination of
cluster and germline; it has columns * Sequence, CDR1.nt, CDR2.nt, CDR3.nt, FR1.nt, FR2.nt,
FR3.nt, FR4.nt, V.allele, J.allele, V.aa, J.aa: all values taken from the input dataframe * Clone.ID:
taken from the input dataframe, or created (filled with row numbers) if missing * Clones: taken
from the input dataframe, or created (filled with ’1’ values) if missing

Examples

data(bcrdata)
bcr_data <- bcrdata$data

bcr_data %>%
seqCluster(seqDist(bcr_data), .fixed_threshold = 3) %>%
repGermline(.threads = 1) %>%
repAlignLineage(.min_lineage_sequences = 2, .align_threads = 2, .nofail = TRUE)

repClonalFamily Builds a phylogenetic tree using the sequences of a clonal lineage

Description

This function uses the PHYLIP package to make phylogenetic analysis. For making trees it uses
maximum parsimony methods.

Usage

repClonalFamily(.data, .vis_groups, .threads, .nofail)

Arguments

.data The data to be processed, output of repAlignLineage() function.

.vis_groups Groups for visualization, used to annotate specific clones on chart and display
them in different colors. This is a named list, where names are for the chart
legend, and list items are clone IDs that belong to the groups. It’s not necessary
to assign groups to all clonotypes; unassigned ones will be displayed on the

30 repClonality

chart as "Clonotype" category. It’s also possible to assign multiple clonotypes
to the same group by providing nested lists or vectors of clone IDs instead of
single clone IDs. Example: .vis_groups = list(A = 817, B = 201, C = list(303,
42))

.threads Number of threads to use.

.nofail Returns NA instead of stopping if PHYLIP is not installed. Used to avoid raising
errors in examples on computers where PHYLIP is not installed.

Value

Dataframe or list of dataframes (if input is a list with multiple samples). The dataframe has these
columns: * Cluster: cluster name * Germline.Input: germline sequence, like it was in the input;
not aligned * Germline.Output: germline sequence, parsed from PHYLIP dnapars function output;
it contains difference of germline from the common ancestor; "." characters mean matching letters
* Common.Ancestor: common ancestor sequence, parsed from PHYLIP dnapars function output *
Trunk.Length: mean trunk length, representing the distance between the most recent common an-
cestor and germline sequence as a measure of the maturity of a lineage * Tree: output tree in "phylo"
format, loaded from by PHYLIP dnapars function output * TreeStats: nested dataframe containing
data about tree nodes, needed for visualization * Sequences: nested dataframe containing all se-
quences for this combination of cluster and germline; it contains regions from original sequences,
saved for repSomaticHypermutation() calculation, and also data needed for visualizations

Examples

data(bcrdata)
bcr_data <- bcrdata$data

bcr_data %>%
seqCluster(seqDist(bcr_data), .fixed_threshold = 3) %>%
repGermline(.threads = 1) %>%
repAlignLineage(.min_lineage_sequences = 2, .align_threads = 2, .nofail = TRUE) %>%
repClonalFamily(.threads = 1, .nofail = TRUE)

repClonality Clonality analysis of immune repertoires

Description

repClonality function encompasses several methods to measure clonal proportions in a given
repertoire.

Usage

repClonality(
.data,
.method = c("clonal.prop", "homeo", "top", "rare"),
.perc = 10,

repClonality 31

.clone.types = c(Rare = 1e-05, Small = 1e-04, Medium = 0.001, Large = 0.01,
Hyperexpanded = 1),

.head = c(10, 100, 1000, 3000, 10000, 30000, 1e+05),

.bound = c(1, 3, 10, 30, 100)
)

Arguments

.data The data to be processed. Can be data.frame, data.table, or a list of these objects.
Every object must have columns in the immunarch compatible format. immu-
narch_data_format
Competent users may provide advanced data representations: DBI database con-
nections, Apache Spark DataFrame from copy_to or a list of these objects. They
are supported with the same limitations as basic objects.
Note: each connection must represent a separate repertoire.

.method A String with one of the following options: "clonal.prop", "homeo", "top"
or "rare".
Set "clonal.prop" to compute clonal proportions or in other words percentage
of clonotypes required to occupy specified by .perc percent of the total immune
repertoire.
Set "homeo" to analyse relative abundance (also known as clonal space home-
ostasis), which is defined as the proportion of repertoire occupied by clonal
groups with specific abundances..
Set "top" to estimate relative abundance for the groups of top clonotypes in
repertoire, e.g., ten most abundant clonotypes. Use ".head" to define index
intervals, such as 10, 100 and so on.
Set "rare" to estimate relative abundance for the groups of rare clonotypes with
low counts. Use ".bound" to define the threshold of clonotype groups.

.perc A single numerical value ranging from 0 to 100.

.clone.types A named numerical vector with the threshold of the half-closed intervals that
mark off clonal groups.

.head A numerical vector with ranges of the top clonotypes.

.bound A numerical vector with ranges of abundance for the rare clonotypes in the
dataset.

Details

Clonal proportion assessment is a different approach to estimate repertoire diversity. When visu-
alised, it allows for thorough examination of immune repertoire structure and composition.

In its core this type of analysis is similar to the relative species abundance concept in ecology.
Relative abundance is the percent composition of an organism of a particular kind relative to the
total number of organisms in the area.

A stacked barplot of relative clonotype abundances can be therefore viewed as a non-parametric
approach to comparing their underlying distributions.

32 repDiversity

Value

If input data is a single immune repertoire, then the function returns a numeric vector with clonality
statistics.

Otherwise, it returns a numeric matrix with clonality statistics for all input repertoires.

See Also

repDiversity

Examples

Load the data
data(immdata)

imm_pr <- repClonality(immdata$data, .method = "clonal.prop")
vis(imm_pr)

imm_top <- repClonality(immdata$data, .method = "top", .head = c(10, 100, 1000, 3000, 10000))
vis(imm_top)

imm_rare <- repClonality(immdata$data, .method = "rare")
vis(imm_rare)

imm_hom <- repClonality(immdata$data, .method = "homeo")
vis(imm_hom)

repDiversity The main function for immune repertoire diversity estimation

Description

This is a utility function to estimate the diversity of species or objects in the given distribution.

Note: functions will check if .data is a distribution of a random variable (sum == 1) or not. To force
normalisation and / or to prevent this, set .do.norm to TRUE (do normalisation) or FALSE (don’t
do normalisation), respectively.

Usage

repDiversity(
.data,
.method = "chao1",
.col = "aa",
.max.q = 6,
.min.q = 1,
.q = 5,
.step = NA,
.quantile = c(0.025, 0.975),

repDiversity 33

.extrapolation = NA,

.perc = 50,

.norm = TRUE,

.verbose = TRUE,

.do.norm = NA,

.laplace = 0
)

Arguments

.data The data to be processed. Can be data.frame, data.table, or a list of these objects.

Every object must have columns in the immunarch compatible format. immu-
narch_data_format

Competent users may provide advanced data representations: DBI database con-
nections, Apache Spark DataFrame from copy_to or a list of these objects. They
are supported with the same limitations as basic objects.

Note: each connection must represent a separate repertoire.

.method Picks a method used for estimation out of a following list: chao1, hill, div,
gini.simp, inv.simp, gini, raref, d50, dxx.

.col A string that specifies the column(s) to be processed. Pass one of the following
strings, separated by the plus sign: "nt" for nucleotide sequences, "aa" for amino
acid sequences, "v" for V gene segments, "j" for J gene segments. E.g., pass
"aa+v" to compute diversity estimations on CDR3 amino acid sequences paired
with V gene segments, i.e., in this case a unique clonotype is a pair of CDR3
amino acid and V gene segment. Clonal counts of equal clonotypes will be
summed up.

.max.q The max hill number to calculate (default: 5).

.min.q Function calculates several hill numbers. Set the min (default: 1).

.q q-parameter for the Diversity index.

.step Rarefaction step’s size.

.quantile Numeric vector with quantiles for confidence intervals.

.extrapolation An integer. An upper limit for the number of clones to extrapolate to. Pass 0
(zero) to turn extrapolation subroutines off.

.perc Set the percent to dXX index measurement.

.norm Normalises rarefaction curves.

.verbose If TRUE then outputs progress.

.do.norm One of the three values - NA, TRUE or FALSE. If NA then checks for distrubu-
tion (sum(.data) == 1) and normalises if needed with the given laplace correction
value. if TRUE then does normalisation and laplace correction. If FALSE then
doesn’t do neither normalisaton nor laplace correction.

.laplace A numeric value, which is used as a pseudocount for Laplace smoothing.

34 repDiversity

Details

- True diversity, or the effective number of types, refers to the number of equally-abundant types
needed for the average proportional abundance of the types to equal that observed in the dataset of
interest where all types may not be equally abundant.

- Inverse Simpson index is the effective number of types that is obtained when the weighted arith-
metic mean is used to quantify average proportional abundance of types in the dataset of interest.

- The Gini coefficient measures the inequality among values of a frequency distribution (for exam-
ple levels of income). A Gini coefficient of zero expresses perfect equality, where all values are
the same (for example, where everyone has the same income). A Gini coefficient of one (or 100
percents) expresses maximal inequality among values (for example where only one person has all
the income).

- The Gini-Simpson index is the probability of interspecific encounter, i.e., probability that two
entities represent different types.

- Chao1 estimator is a nonparameteric asymptotic estimator of species richness (number of species
in a population).

- Rarefaction is a technique to assess species richness from the results of sampling through extrap-
olation.

- Hill numbers are a mathematically unified family of diversity indices (differing among themselves
only by an exponent q).

- d50 is a recently developed immune diversity estimate. It calculates the minimum number of
distinct clonotypes amounting to greater than or equal to 50 percent of a total of sequencing reads
obtained following amplification and sequencing

- dXX is a similar to d50 index where XX corresponds to desirable percent of total sequencing
reads.

Value

div, gini, gini.simp, inv.simp, raref return numeric vector of length 1 with value.

chao1 returns 4 values: estimated number of species, standart deviation of this number and two 95

hill returns a vector of specified length .max.q - .min.q

For most methods, if input data is a single immune repertoire, then the function returns a numeric
vector with diversity statistics.

Otherwise, it returns a numeric matrix with diversity statistics for all input repertoires.

For Chao1 the function returns a matrix with diversity estimations.

For rarefaction the function returns either a matrix with diversity estimatinos on different step of
the simulaiton process or a list with such matrices.

See Also

repOverlap, entropy, repClonality Rarefaction wiki https://en.wikipedia.org/wiki/Rarefaction_
(ecology) Hill numbers paper https://www.uvm.edu/~ngotelli/manuscriptpdfs/ChaoHill.
pdf Diversity wiki https://en.wikipedia.org/wiki/Measurement_of_biodiversity

https://en.wikipedia.org/wiki/Rarefaction_(ecology)
https://en.wikipedia.org/wiki/Rarefaction_(ecology)
https://www.uvm.edu/~ngotelli/manuscriptpdfs/ChaoHill.pdf
https://www.uvm.edu/~ngotelli/manuscriptpdfs/ChaoHill.pdf
https://en.wikipedia.org/wiki/Measurement_of_biodiversity

repExplore 35

Examples

data(immdata)

Make data smaller for testing purposes
immdata$data <- top(immdata$data, 4000)

chao1
repDiversity(.data = immdata$data, .method = "chao1") %>% vis()

Hill numbers
repDiversity(

.data = immdata$data, .method = "hill", .max.q = 6,

.min.q = 1, .do.norm = NA, .laplace = 0
) %>% vis()

diversity
repDiversity(.data = immdata$data, .method = "div", .q = 5, .do.norm = NA, .laplace = 0) %>%

vis()

Gini-Simpson
repDiversity(.data = immdata$data, .method = "gini.simp", .q = 5, .do.norm = NA, .laplace = 0) %>%

vis()

inverse Simpson
repDiversity(.data = immdata$data, .method = "inv.simp", .do.norm = NA, .laplace = 0) %>% vis()

Gini coefficient
repDiversity(.data = immdata$data, .method = "gini", .do.norm = NA, .laplace = 0)

d50
repDiversity(.data = immdata$data, .method = "d50") %>% vis()

repExplore Main function for exploratory data analysis: compute the distribution
of lengths, clones, etc.

Description

The repExplore function calculates the basic statistics of repertoire: the number of unique immune
receptor clonotypes, their relative abundances, and sequence length distribution across the input
dataset.

Usage

repExplore(
.data,
.method = c("volume", "count", "len", "clones"),
.col = c("nt", "aa"),
.coding = TRUE

)

36 repExplore

Arguments

.data The data to be processed. Can be data.frame, data.table, or a list of these objects.
Every object must have columns in the immunarch compatible format. immu-
narch_data_format
Competent users may provide advanced data representations: DBI database con-
nections, Apache Spark DataFrame from copy_to or a list of these objects. They
are supported with the same limitations as basic objects.
Note: each connection must represent a separate repertoire.

.method A string that specifies the method of analysis. It can be either "volume", "count",
"len" or "clones".
When .method is set to "volume" the repExplore calculates the number of unique
clonotypes in the input data.
When .method is set to "count" the repExplore calculates the distribution of
clonotype abundances, i.e., how frequent receptors with different abundances
are.
When .method is set to "len" the repExplore calculates the distribution of CDR3
sequence lengths.
When .method is set to "clones" the repExplore returns the number of clones
(i.e., cells) per input repertoire.

.col A string that specifies the column to be processed. Pass "nt" for nucleotide
sequence or "aa" for amino acid sequence.

.coding If TRUE, then only coding sequences will be analysed.

Value

If input data is a single immune repertoire, then the function returns a numeric vector with ex-
ploratory analysis statistics.

Otherwise, it returns a numeric matrix with exploratory analysis statistics for all input repertoires.

See Also

vis.immunr_exp_vol

Examples

data(immdata)

Calculate statistics and generate a visual output with vis()
repExplore(immdata$data, .method = "volume") %>% vis()

repExplore(immdata$data, .method = "count") %>% vis()

repExplore(immdata$data, .method = "len") %>% vis()

repFilter 37

repFilter Main function for data filtering

Description

Main function for data filtering

Usage

repFilter(
.data,
.method = "by.clonotype",
.query = list(CDR3.aa = exclude("partial", "out_of_frame")),
.match = "exact"

)

Arguments

.data The data to be processed. Must be the list of 2 elements: a data table and a
metadata table.

.method Method of filtering. Implemented methods: by.meta, by.repertoire (by.rep),
by.clonotype (by.cl) Default value: ’by.clonotype’.

.query Filtering query. It’s a named list of filters that will be applied to data. Possible
values for names in this list are dependent on filter methods: - by.meta: filters by
metadata. Names in the named list are metadata column headers. - by.repertoire:
filters by the number of clonotypes or total number of clones in sample. Possi-
ble names in the named list are "n_clonotypes" and "n_clones". - by.clonotype:
filters by data in all samples. Names in the named list are data column headers.
Elements of the named list for each of the filters are filtering options. Pos-
sible values for filtering options: - include("STR1", "STR2", ...): keeps only
rows with matching values. Available for methods: "by.meta", "by.clonotype".
- exclude("STR1", "STR2", ...): removes rows with matching values. Available
for methods: "by.meta", "by.clonotype". - lessthan(value): keeps rows/samples
with numeric values less than specified. Available for methods: "by.meta",
"by.repertoire", "by.clonotype". - morethan(value): keeps rows/samples with
numeric values more than specified. Available for methods: "by.meta", "by.repertoire",
"by.clonotype". - interval(from, to): keeps rows/samples with numeric values
that fits in this interval. from is inclusive, to is exclusive. Available for meth-
ods: "by.meta", "by.repertoire", "by.clonotype". Default value: ’list(CDR3.aa =
exclude("partial", "out_of_frame"))’.

.match Matching method for "include" and "exclude" options in query. Possible values:
- exact: matches only the exact specified string; - startswith: matches all strings
starting with the specified substring; - substring: matches all strings containing
the specified substring. Default value: ’exact’.

38 repGermline

Examples

data(immdata)

Select samples with status "MS"
repFilter(immdata, "by.meta", list(Status = include("MS")))

Select samples without status "MS"
repFilter(immdata, "by.meta", list(Status = exclude("MS")))

Select samples from lanes "A" and "B" with age > 15
repFilter(immdata, "by.meta", list(Lane = include("A", "B"), Age = morethan(15)))

Select samples that are not from lanes "A" and "B"
repFilter(immdata, "by.meta", list(Lane = exclude("A", "B")))

Select samples with a number of clonotypes from 1000 to 5000
repFilter(immdata, "by.repertoire", list(n_clonotypes = interval(1000, 5000)))

Select clonotypes in all samples with alpha chains
repFilter(immdata, "by.clonotype",

list(V.name = include("AV"), J.name = include("AJ")),
.match = "substring"

)

repGermline Creates germlines for clonal lineages

Description

This function creates germlines for clonal lineages. B cell clonal lineage represents a set of B cells
that presumably have a common origin (arising from the same VDJ rearrangement event) and a
common ancestor. Each clonal lineage has its own germline sequence that represents the ancestral
sequence for each BCR in clonal lineage. In other words, germline sequence is a sequence of B-
cells immediately after VDJ recombination, before B-cell maturation and hypermutation process.
Germline sequence is useful for assessing the degree of mutation and maturity of the repertoire.

Usage

repGermline(.data, .species, .min_nuc_outside_cdr3, .threads)

Arguments

.data The data to be processed. Can be data.frame, data.table or a list of these objects.
It must have columns in the immunarch compatible format immunarch_data_format.

.species Species from which the data was acquired. Available options: "HomoSapi-
ens" (default), "MusMusculus", "BosTaurus", "CamelusDromedarius", "Can-
isLupusFamiliaris", "DanioRerio", "MacacaMulatta", "MusMusculusDomesti-
cus", "MusMusculusCastaneus", "MusMusculusMolossinus", "MusMusculus-

repLoad 39

Musculus", "MusSpretus", "OncorhynchusMykiss", "OrnithorhynchusAnatinus",
"OryctolagusCuniculus", "RattusNorvegicus", "SusScrofa".

.min_nuc_outside_cdr3

This parameter sets how many nucleotides should have V or J chain outside of
CDR3 to be considered good for further alignment.

.threads Number of threads to use.

Value

Data with added columns: * Sequence (FR1+CDR1+FR2+CDR2+FR3+CDR3+FR4 in nucleotides;
the column will be replaced if exists) * V.allele, J.allele (chosen alleles of V and J genes), *
V.aa, J.aa (V and J sequences from original clonotype, outside CDR3, converted to amino acids) *
Germline.sequence (combined germline nucleotide sequence)

Examples

data(bcrdata)

bcrdata$data %>%
top(5) %>%
repGermline()

repLoad Load immune repertoire files into the R workspace

Description

The repLoad function loads repertoire files into R workspace in the immunarch format where you
can immediately use them for the analysis. repLoad automatically detects the right format for your
files, so all you need is simply provide the path to your files.

See "Details" for more information on supported formats. See "Examples" for diving right into it.

Usage

repLoad(.path, .mode = "paired", .coding = TRUE, ...)

Arguments

.path A character string specifying the path to the input data. Input data can be one of
the following:
- a single repertoire file. In this case repLoad returns an R data.frame;
- a vector of paths to repertoire files. Same as in the case with no metadata file
presented in the next section below;
- a path to the folder with repertoire files and, if available, metadata file "meta-
data.txt". If the metadata file if presented, then the repLoad returns a list with
two elements "data" and "meta". "data" is an another list with repertoire R
data.frames. "meta" is a data frame with the metadata. If the metadata file

40 repLoad

"metadata.txt" is not presented, then the repLoad creates a dummy metadata file
with sample names and returns a list with two elements "data" and "meta". If
input data has multiple chains or cell types stored in the same file (for exam-
ple, like in 10xGenomics repertoire files), such repertoire files will be splitted
to different R data frames with only one type of chain and cell presented. The
metadata file will have additional columns specifying cell and chain types for
different samples.

.mode Either "single" for single chain data or "paired" for paired chain data.
Currently "single" works for every format, and "paired" works only for 10X
Genomics data.
By default, 10X Genomics data will be loaded as paired chain data, and other
files will be loaded as single chain data.

.coding A logical value. Set TRUE to get coding-only clonotypes (by defaul). Set
FALSE to get all clonotypes.

... Extra arguments for parsing functions

Details

The metadata has to be a tab delimited file with first column named "Sample". It can have any
number of additional columns with arbitrary names. The first column should contain base names of
files without extensions in your folder. Example:

Sample Sex Age Status
immunoseq_1 M 1 C
immunoseq_2 M 2 C
immunoseq_3 FALSE 3 A

Currently, Immunarch support the following formats:

- "immunoseq" - ImmunoSEQ of any version. http://www.adaptivebiotech.com/immunoseq

- "mitcr" - MiTCR. https://github.com/milaboratory/mitcr

- "mixcr" - MiXCR (the "all" files) of any version. https://github.com/milaboratory/mixcr

- "migec" - MiGEC. http://migec.readthedocs.io/en/latest/

- "migmap" - For parsing IgBLAST results postprocessed with MigMap. https://github.com/mikessh/migmap

- "tcr" - tcR, our previous package. https://imminfo.github.io/tcr/

- "vdjtools" - VDJtools of any version. http://vdjtools-doc.readthedocs.io/en/latest/

- "imgt" - IMGT HighV-QUEST. http://www.imgt.org/HighV-QUEST/

- "airr" - adaptive immune receptor repertoire (AIRR) data format. http://docs.airr-community.org/en/latest/datarep/overview.html

- "10x" - 10XGenomics clonotype annotations tables. https://support.10xgenomics.com/single-cell-
vdj/software/pipelines/latest/output/annotation

- "archer" - ArcherDX clonotype tables. https://archerdx.com/

repOverlap 41

Value

A list with two named elements:

- "data" is a list of input samples;

- "meta" is a data frame with sample metadata.

See Also

immunr_data_format for immunarch data format; repSave for file saving; repOverlap, geneUsage
and repDiversity for starting with immune repertoires basic statistics.

Examples

To load the data from a single file (note that you don't need to specify the data format):
file_path <- paste0(system.file(package = "immunarch"), "/extdata/io/Sample1.tsv.gz")
immdata <- repLoad(file_path)

Suppose you have a following structure in your folder:
>_ ls
immunoseq1.txt
immunoseq2.txt
immunoseq3.txt
metadata.txt

To load the whole folder with every file in it type:
file_path <- paste0(system.file(package = "immunarch"), "/extdata/io/")
immdata <- repLoad(file_path)
print(names(immdata))

We recommend creating a metadata file named "metadata.txt" in the folder.

In that case, when you load your data you will see:
> immdata <- repLoad("path/to/your/folder/")
> names(immdata)
[1] "data" "meta"

If you do not have "metadata.txt", you will see the same output,
but your metadata will be almost empty:
> immdata <- repLoad("path/to/your/folder/")
> names(immdata)
[1] "data" "meta"

repOverlap Main function for public clonotype statistics calculations

Description

The repOverlap function is designed to analyse the overlap between two or more repertoires. It
contains a number of methods to compare immune receptor sequences that are shared between
individuals.

42 repOverlap

Usage

repOverlap(
.data,
.method = c("public", "overlap", "jaccard", "tversky", "cosine", "morisita",
"inc+public", "inc+morisita"),

.col = "aa",

.a = 0.5,

.b = 0.5,

.verbose = TRUE,

.step = 1000,

.n.steps = 10,

.downsample = FALSE,

.bootstrap = NA,

.verbose.inc = NA,

.force.matrix = FALSE
)

Arguments

.data The data to be processed. Can be data.frame, data.table, or a list of these objects.
Every object must have columns in the immunarch compatible format. immu-
narch_data_format
Competent users may provide advanced data representations: DBI database con-
nections, Apache Spark DataFrame from copy_to or a list of these objects. They
are supported with the same limitations as basic objects.
Note: each connection must represent a separate repertoire.

.method A string that specifies the method of analysis or a combination of methods. The
repOverlap function supports following basic methods: "public", "overlap",
"jaccard", "tversky", "cosine", "morisita". If vector of multiple methods is given
for this parameter, the first method will be used.

.col A string that specifies the column(s) to be processed. Pass one of the following
strings, separated by the plus sign: "nt" for nucleotide sequences, "aa" for amino
acid sequences, "v" for V gene segments, "j" for J gene segments. E.g., pass
"aa+v" to compute overlaps on CDR3 amino acid sequences paired with V gene
segments, i.e., in this case a unique clonotype is a pair of CDR3 amino acid and
V gene segment. Clonal counts of equal clonotypes will be summed up.

.a, .b Alpha and beta parameters for Tversky Index. Default values give the Jaccard
index measure.

.verbose if TRUE then output the progress.

.step Either an integer or a numeric vector.
In the first case, the integer defines the step of incremental overlap.
In the second case, the vector encodes all repertoire sampling depths.

.n.steps Skipped if ".step" is a numeric vector.

.downsample If TRUE then performs downsampling to N clonotypes at each step instead of
choosing the top N clonotypes in incremental overlaps. Change nothing of you
are using conventional methods.

repOverlap 43

.bootstrap Set NA to turn off any bootstrapping, set a number to perform bootstrapping
with this number of tries.

.verbose.inc Logical. If TRUE then shows output from the computation process.

.force.matrix Logical. If TRUE then always forces the matrix output even in case of two input
repertoires.

Details

"public" and "shared" are synonyms that exist for the convenience of researchers.

The "overlap" coefficient is a similarity measure that measures the overlap between two finite sets.

The "jaccard" index is conceptually a percentage of how many objects two sets have in common
out of how many objects they have total.

The "tversky" index is an asymmetric similarity measure on sets that compares a variant to a proto-
type.

The "cosine" index is a measure of similarity between two non-zero vectors of an inner product
space that measures the cosine of the angle between them.

The "morisita" index measures how many times it is more likely to randomly select two sampled
points from the same quadrat (the dataset is covered by a regular grid of changing size) then it
would be in the case of a random distribution generated from a Poisson process. Duplicate objects
are merged with their counts are summed up.

Value

In most cases the return value is a matrix with overlap values for each pair of repertoires.

If only two repertoires were provided, return value is single numeric value.

If one of the incremental method is chosen, return list of overlap matrix.

See Also

inc_overlap, vis

Examples

data(immdata)

Make data smaller for testing purposes
immdata$data <- top(immdata$data, 4000)

ov <- repOverlap(immdata$data, .verbose = FALSE)
vis(ov)

ov <- repOverlap(immdata$data, "jaccard", .verbose = FALSE)
vis(ov, "heatmap2")

44 repOverlapAnalysis

repOverlapAnalysis Post-analysis of public clonotype statistics: PCA, clustering, etc.

Description

The repOverlapAnalysis function contains advanced data analysis methods. You can use several
clustering and dimensionality reduction techniques in order to investigate further the difference
between repertoires provided.

To cluster a subset of similar data with repOverlapAnalysis you can perform hierarchical cluster-
ing, k-means or dbscan (’hclust’, ’kmeans’, ’dbscan’ respectively).

To reduce dimensions, for example, to select features for subsequent analysis, you can execute the
multidimensional scaling or t-sne algorithms (’mds’ and ’tsne’ respectively).

Usage

repOverlapAnalysis(
.data,
.method = ("hclust"),
.scale = default_scale_fun,
.raw = TRUE,
.perp = 1,
.theta = 0.1,
.eps = 0.01,
.k = 2

)

Arguments

.data Any distance matrix between pairs of repertoires. You can also pass your output
from repOverlap.

.method A string that defines the type of analysis to perform.

.scale A function to scale the data before passing it to the MDS algorithm.

.raw A logical value. Set TRUE if you want to receive raw output of clustering or
dimensionality reduction function of choice. Set FALSE if you want to receive
processed output that can be subjected to visualisation with vis function.

.perp A numerical value, t-SNE parameter, see immunr_tsne.

.theta A numerical value, t-SNE parameter, see immunr_tsne.

.eps A numerical value, DBscan epsylon parameter, see immunr_dbscan.

.k The number of clusters to create, passed as k to hcut or as centers to kmeans.

Value

Depends on the last element in the .method string. See immunr_tsne for more info.

repSample 45

Examples

data(immdata)
ov <- repOverlap(immdata$data)
repOverlapAnalysis(ov, "mds+hclust") %>% vis()

repSample Downsampling and resampling of immune repertoires

Description

Sample (downsample) repertoires using different approches.

Usage

repSample(
.data,
.method = c("downsample", "resample", "sample"),
.n = NA,
.prob = TRUE

)

Arguments

.data The data to be processed. Can be data.frame, data.table, or a list of these objects.
Every object must have columns in the immunarch compatible format. immu-
narch_data_format
Competent users may provide advanced data representations: DBI database con-
nections, Apache Spark DataFrame from copy_to or a list of these objects. They
are supported with the same limitations as basic objects.
Note: each connection must represent a separate repertoire.

.method Character. Name of a sampling method. See "Details" for more details. Default
value is "downsample" that downsamples the repertoires to the number of clones
(i.e., reads / UMIs) that the smallest repertoire has, if user doesn’t set any value
to the ".n" argument.

.n Integer. Number of clones / clonotypes / reads / UMIs to choose, depending on
the method. Set NA to sample repertoires to the size of the smallest repertoire
in the ".data".

.prob Logical. If TRUE then samples the clonotypes with probability weights equal
to their number of clones. Used only if ".method" is "sample".

Details

If .method is "downsample" then repSample chooses .n clones (not clonotypes!) from the input
repertoires without any probabilistic simulation, but exactly computing each choosed clones. Such
approach is is more consistent and biologically pleasant than an output from the function if .method
is "resample".

46 repSave

If .method is "resample" then repSample uses multinomial distribution to compute the number of
occurences for each cloneset. then it removes zero-number clonotypes and return the resulting data
frame. Probabilities for rmultinom for each cloneset is a percentage of this cloneset in the "Propor-
tion" column. It’s a some sort of simulation of how clonotypes are chosen from the organisms.

if .method is "sample" then repSample chooses .n clonotypes (not clones!) randomly. Depending
on the .prob argument, the function chooses clonotypes either according to their size (if .prob is
TRUE, by default), or each clonotype has an equal chance to be choosed (if .prob is FALSE). Note
that sampling is done without replacing.

Value

Subsampled immune repertoire or a list of subsampled immune repertoires.

See Also

rmultinom, clonal_proportion

Examples

data(immdata)
Downsampling to 1000 clones (not clonotypes!)
tmp <- repSample(immdata$data[[1]], .n = 1000)
sum(tmp$Clones)

Downsampling to 1000 clonotypes
tmp <- repSample(immdata$data[[1]], "sample", .n = 1000)
nrow(tmp)

Downsampling to the smallest repertoire by clones (not clonotypes!)
tmp <- repSample(immdata$data[c(1, 2)])
sum(tmp[[1]]$Clones)
sum(tmp[[2]]$Clones)

Downsampling to the smallest repertoire by clonotypes
tmp <- repSample(immdata$data[c(1, 2)], "sample")
nrow(tmp[[1]]$Clones)
nrow(tmp[[2]]$Clones)

repSave Save immune repertoires to the disk

Description

The repSave function is deigned to save your data to the disk in desirable format. Currently sup-
ports "immunarch" and "vdjtools" file formats.

Usage

repSave(.data, .path, .format = c("immunarch", "vdjtools"), .compress = TRUE)

repSomaticHypermutation 47

Arguments

.data An R dataframe, a list of R dataframes or a list with data and meta where first
element is a list of dataframes and the latter is a dataframe with metadata.

.path A string with the path to the output directory. It should include file name if a
single dataframe is provided to .data argument.

.format A string with desirable format specification. Current options are "immunarch"
and "vdjtools".

.compress A boolean value. Defines whether the output will be compressed or not.

Details

It is not necessary to create directories beforehand. If the provided directory does not exist it will
be created automatically.

Value

No return value.

Examples

data(immdata)
Reduce data to save time on examples
immdata$data <- purrr::map(immdata$data, ~ .x %>% head(10))
dirpath <- tempdir()
Save the list of repertoires
repSave(immdata, dirpath)
Load it and check if it is the same
new_immdata <- repLoad(dirpath)
sum(immdata$data[[1]] != new_immdata$data[[1]], na.rm = TRUE)
sum(immdata$data[[2]] != new_immdata$data[[2]], na.rm = TRUE)
sum(immdata$meta != new_immdata$meta, na.rm = TRUE)

repSomaticHypermutation

Calculates number of mutations against the germline for each clono-
type

Description

This function aligns V and J genes from the germline in each cluster with corresponding genes
in each clonotype, saves the alignments for purpose of visualization, and calculates number of
mutations for each clonotype.

Usage

repSomaticHypermutation(.data, .threads, .nofail)

48 scdata

Arguments

.data The data to be processed: an output of repClonalFamily(); variants with one
sample and list of samples are both supported.

.threads Number of threads to use.

.nofail Will return NA instead of stopping if Clustal W is not installed. Used to avoid
raising errors in examples on computers where Clustal W is not installed.

Value

Dataframe or list of dataframes (if input is a list with multiple samples). The dataframe has all the
columns from repClonalFamily() output dataframe, with Sequence column unnested: the resulting
dataframe has one line per clonotype. Clone.ID column contains original IDs for clonotypes, and
can be used as dataframe key. New columns are added: * Germline.Alignment.V: contains V gene
alignment of current clonotype with the germline * Germline.Alignment.J: contains J gene align-
ment of current clonotype with the germline * Substitutions: contains number of substitutions in
the alignment (summary for V and J) * Insertions: contains number of insertions in the clonotype
relative to germline (summary for V and J) * Deletions: contains number of deletions in the clono-
type relative to germline (summary for V and J) * Mutations: contains total number of mutations in
the alignment (summary for V and J)

Examples

data(bcrdata)
bcr_data <- bcrdata$data

bcr_data %>%
seqCluster(seqDist(bcr_data), .fixed_threshold = 3) %>%
repGermline(.threads = 1) %>%
repAlignLineage(.min_lineage_sequences = 2, .align_threads = 2, .nofail = TRUE) %>%
repClonalFamily(.threads = 1, .nofail = TRUE) %>%
repSomaticHypermutation(.threads = 1, .nofail = TRUE)

scdata Paired chain immune repertoire dataset

Description

A dataset with paired chain IG data for testing and examplatory purposes.

Usage

scdata

select_barcodes 49

Format

A list of four elements: "data" is a list with data frames with clonotype tables. "meta" is a metadata
table. "bc_patients" is a list of barcodes corresponding to specific patients. "bc_clusters" is a list of
barcodes corresponding to specific cell clusters.

data List of immune repertoire data frames.

meta Metadata ...

select_barcodes Select specific clonotypes using barcodes from single-cell metadata

Description

Subsets the input immune repertoire by barcodes. Creates a vector of barcodes to subset or a
vector cluster IDs and corresponding barcodes to get a list of immune repertoires corresponding to
cluster IDs. Columns with clonotype counts and proportions are changed accordingly to the filtered
barcodes.

Usage

select_barcodes(.data, .barcodes, .force.list = FALSE)

Arguments

.data The data to be processed. Can be data.frame, data.table, or a list of these objects.
Every object must have columns in the immunarch compatible format. immu-
narch_data_format
Competent users may provide advanced data representations: DBI database con-
nections, Apache Spark DataFrame from copy_to or a list of these objects. They
are supported with the same limitations as basic objects.
Note: each connection must represent a separate repertoire.

.barcodes Either a character vector with barcodes or a named character/factor vector with
barcodes as names and cluster IDs a vector elements. The output of Seurat’s
Idents function works.

.force.list Logical. If TRUE then always returns a list, even if the result is one data frame.

Value

An immune repertoire (if ".barcodes" is a barcode vector) or a list of immune repertoires (if ".bar-
codes" is named vector or an output from Seurat::Idents()). Each element is an immune repertoire
with clonotype barcodes corresponding to the input barcodes. The output list names are cluster
names in the ".barcode" argument (Seurat::Idents() case only).

See Also

select_clusters

50 select_clusters

Examples

Not run:
data(immdata)
Create a fake single-cell data
df <- immdata$data[[1]]
df$Barcode <- "AAAAACCCCC"
df$Barcode[51:nrow(df)] <- "GGGGGCCCCC"
barcodes <- "AAAAACCCCC"
df <- select_barcodes(df, barcodes)
nrow(df)

End(Not run)

select_clusters Split the immune repertoire data to clusters from single-cell barcodes

Description

Given the vector of barcodes from Seurat, splits the input repertoires to separate subsets following
the barcodes’ assigned IDs. Useful in case you want to split immune repertoires by patients or
clusters.

Usage

select_clusters(.data, .clusters, .field = "Cluster")

Arguments

.data List of two elements "data" and "meta", with "data" being a list of immune
repertoires, and "meta" being a metadata table.

.clusters Factor vector with barcodes as vector names and cluster IDs as vector elements.
The output of the Seurat Idents function works.

.field A string specifying the name of the field in the input metadata. New immune
repertoire subsets will have cluster IDs in this field.

Value

A list with two elements "data" and "meta" with updated immune repertoire tables and metadata.

See Also

select_barcodes

seqCluster 51

Examples

Not run:
library(Seurat)
Idents(pbmc_small)
new_cluster_ids <- c("A", "B", "C")
new_cluster_ids <- levels(pbmc_small)
new_cluster_ids
pbmc_small <- RenameIdents(pbmc_small, new_cluster_ids)

End(Not run)

seqCluster Function for assigning clusters based on sequences similarity

Description

Graph clustering based on distances between sequences

Usage

seqCluster(.data, .dist, .perc_similarity, .nt_similarity, .fixed_threshold)

Arguments

.data The data which was used to caluculate .dist object. Can be data.frame, data.table,
or a list of these objects.
Every object must have columns in the immunarch compatible format immu-
narch_data_format

.dist List of distance objects produced with seqDist function.

.perc_similarity

Numeric value between 0 and 1 specifying the maximum acceptable weight of
an edge in a graph. This threshold depends on the length of sequences.

.nt_similarity Numeric between 0-sequence length specifying the threshold of allowing a 1 in
n nucleotides mismatch in sequencies.

.fixed_threshold

Numeric specifying the threshold on the maximum weight of an edge in a graph.

Value

Immdata data format object. Same as .data, but with extra ’Cluster’ column with clusters assigned.

Examples

data(immdata)
In this example, we will use only 2 samples with 500 clonotypes in each for time saving
input_data <- lapply(immdata$data[1:2], head, 500)
dist_result <- seqDist(input_data)
cluster_result <- seqCluster(input_data, dist_result, .fixed_threshold = 1)

52 seqDist

seqDist Function for computing distance for sequences

Description

Computing sequential distances between clonotypes from two repertoires:

Usage

seqDist(.data, .col = 'CDR3.nt', .method = 'hamming',
.group_by = c("V.name", "J.name"), .group_by_seqLength = TRUE, .trim_genes = TRUE, ...)

Arguments

.data The data to be processed. Can be data.frame, data.table, or a list of these objects.
Every object must have columns in the immunarch compatible format immu-
narch_data_format

.col A string that specifies the column name to be processed. The default value is
’CDR3.nt’.

.method Character value or user-defined function.

.group_by Character vector of column names to group sequence by. The default value
is c("V.first", "J.first"). Columns "V.first" and "J.first" containing first genes
without allele suffixes are calculated automatically from "V.name" and "J.name"
if absent in the data. Pass NA for no grouping options.

.group_by_seqLength

If TRUE - adds grouping by sequence length of .col argument
.trim_genes If TRUE - use only general gene values (e.g. "IGHV1-18") of .group_by columns

for clustering; if FALSE - can cause very small clusters in case of high resolution
genotyping

... Extra arguments for user-defined function.
The default value is 'hamming' for Hamming distance which counts the number
of character substitutions that turns b into a. If a and b have different number of
characters the distance is Inf.
Other possible values are:
'lv' for Levenshtein distance which counts the number of deletions, insertions
and substitutions necessary to turn b into a.
'lcs' for longest common substring is defined as the longest string can be ob-
tained by pairing characters from a and b while keeping the order of characters
intact.
In case of user-defined function, it should take x and y parameters as input and
return dist object.

Value

Named list of list with dist objects for given repertoires for each combination of .group_by vari-
able(s) and/or sequence length of .col.

set_pb 53

Examples

data(immdata)
Reducing data to save time on examples
immdata$data <- purrr::map(immdata$data, ~ .x %>% head(10))
Computing hamming distance for the first two repertoires in \code{'immdata'}
seqDist(immdata$data[1:2])

Here we define a custom distance function
that will count the difference in number of characters in sequences.

f <- function(x, y) {
res <- matrix(nrow = length(x), ncol = length(y))
for (i in 1:length(x)) {
res[i,] <- abs(nchar(x[i]) - nchar(y))

}
dimnames(res) <- list(x, y)
return(as.dist(res))

}

seqDist(immdata$data[1:2], .method = f, .group_by_seqLength = FALSE)

set_pb Set and update progress bars

Description

Set and update progress bars

Usage

set_pb(.max)

add_pb(.pb, .value = 1)

Arguments

.max Integer. Maximal value of the progress bar.

.pb Progress bar object from set_pb.

.value Numeric. Value to add to the progress bar at each step.

Value

An updated progress bar.

Developer Examples

pb <- immunarch:::set_pb(100) immunarch:::add_pb(pb, 25) immunarch:::add_pb(pb, 25) immu-
narch:::add_pb(pb, 25) immunarch:::add_pb(pb, 25) close(pb)

54 spectratype

spectratype Immune repertoire spectratyping

Description

Immune repertoire spectratyping

Usage

spectratype(.data, .quant = c("id", "count"), .col = "nt")

Arguments

.data The data to be processed. Can be data.frame, data.table, or a list of these objects.
Every object must have columns in the immunarch compatible format. immu-
narch_data_format
Competent users may provide advanced data representations: DBI database con-
nections, Apache Spark DataFrame from copy_to or a list of these objects. They
are supported with the same limitations as basic objects.
Note: each connection must represent a separate repertoire.

.quant Select the column with clonal counts to evaluate. Set to "id" to count every
clonotype once. Set to "count" to take into the account number of clones per
clonotype.

.col A string that specifies the column(s) to be processed. The output is one of the
following strings, separated by the plus sign: "nt" for nucleotide sequences, "aa"
for amino acid sequences, "v" for V gene segments, "j" for J gene segments.
E.g., pass "aa+v" for spectratyping on CDR3 amino acid sequences paired with
V gene segments, i.e., in this case a unique clonotype is a pair of CDR3 amino
acid and V gene segment. Clonal counts of equal clonotypes will be summed
up.

Value

Data frame with distributions of clonotypes per CDR3 length.

Examples

Load the data
data(immdata)
sp <- spectratype(immdata$data[[1]], .col = "aa+v")
vis(sp)

split_to_kmers 55

split_to_kmers Analysis immune repertoire kmer statistics: sequence profiles, etc.

Description

Analysis immune repertoire kmer statistics: sequence profiles, etc.

Usage

split_to_kmers(.data, .k)

kmer_profile(.data, .method = c("freq", "prob", "wei", "self"), .remove.stop = TRUE)

Arguments

.data Character vector or the output from getKmers.

.k Integer. Size of k-mers.

.method Character vector of length one. If "freq" then returns a position frequency matrix
(PFM) - a matrix with occurences of each amino acid in each position.

If "prob" then returns a position probability matrix (PPM) - a matrix with prob-
abilities of occurences of each amino acid in each position. This is a traditional
representation of sequence motifs.

If "wei" then returns a position weight matrix (PWM) - a matrix with log likeli-
hoods of PPM elements.

If "self" then returns a matrix with self-information of elements in PWM.

For more information see https://en.wikipedia.org/wiki/Position_weight_matrix.

.remove.stop Logical. If TRUE (by default) remove stop codons.

Value

split_to_kmers - Data frame with two columns (k-mers and their counts).

kmer_profile - a matrix with per-position amino acid statistics.

Examples

data(immdata)
kmers <- getKmers(immdata$data[[1]], 5)
kmer_profile(kmers) %>% vis()

56 top

switch_type Return a column’s name

Description

Return a column’s name

Usage

switch_type(type)

process_col_argument(.col)

Arguments

type Character. Specifies the column to choose: "nt" chooses the CDR3 nucleotide
column, "aa" chooses the CDR3 amino acid column, "v" chooses the V gene
segment column, "j" chooses the J gene segment column.

.col A string that specifies the column(s) to be processed. Select one of the following
strings, separated by the plus sign: "nt" for nucleotide sequences, "aa" for amino
acid sequences, "v" for V gene segments, "j" for J gene segments.

Value

A column’s name.

Developer Examples

immunarch:::switch_type("nuc") immunarch:::switch_type("v")

top Get the N most abundant clonotypes

Description

Get the N most abundant clonotypes

Usage

top(.data, .n = 10)

trackClonotypes 57

Arguments

.data The data to be processed. Can be data.frame, data.table, or a list of these objects.
Every object must have columns in the immunarch compatible format. immu-
narch_data_format
Competent users may provide advanced data representations: DBI database con-
nections, Apache Spark DataFrame from copy_to or a list of these objects. They
are supported with the same limitations as basic objects.
Note: each connection must represent a separate repertoire.

.n Numeric. Number of the most abundant clonotypes to return.

Value

Data frame with the .n most abundant clonotypes only.

Examples

data(immdata)
top(immdata$data)
top(immdata$data[[1]])

trackClonotypes Track clonotypes across time and data points

Description

Tracks the temporal dynamics of clonotypes in repertoires. For example, tracking across multiple
time points after vaccination.

Note: duplicated clonotypes are merged and their counts are summed up.

Usage

trackClonotypes(.data, .which = list(1, 15), .col = "aa", .norm = TRUE)

Arguments

.data The data to process. It can be a data.frame, a data.table, or a list of these objects.
Every object must have columns in the immunarch compatible format. immu-
narch_data_format
Competent users may provide advanced data representations: DBI database con-
nections, Apache Spark DataFrame from copy_to or a list of these objects. They
are supported with the same limitations as basic objects.
Note: each connection must represent a separate repertoire.

58 trackClonotypes

.which An argument that regulates which clonotypes to choose for tracking. There are
three options for this argument:
1) passes a list with two elements list(X, Y), where X is the name or the index
of a target repertoire from ".data", and Y is the number of the most abundant
clonotypes to take from X.
2) passes a character vector of sequences to take from all data frames;
3) passes a data frame (data table, database) with one or more columns - first for
sequences, and other for gene segments (if applicable).
See the "Examples" below with examples for each option.

.col A character vector of length 1. Specifies an identifier for a column, from which
the function chooses clonotype sequences. Specify "nt" for nucleotide sequences,
"aa" for amino acid sequences, "aa+v" for amino acid sequences and Variable
genes, "nt+j" for nucleotide sequences with Joining genes, or any combination
of the above. Used only if ".which" has option 1) or option 2).

.norm Logical. If TRUE then uses Proportion instead of the number of Clones per
clonotype to store in the function output.

Value

Data frame with input sequences and counts or proportions for each of the input repertoire.

Examples

Load an example data that comes with immunarch
data(immdata)

Make the data smaller in order to speed up the examples
immdata$data <- immdata$data[c(1, 2, 3, 7, 8, 9)]
immdata$meta <- immdata$meta[c(1, 2, 3, 7, 8, 9),]

Option 1
Choose the first 10 amino acid clonotype sequences
from the first repertoire to track
tc <- trackClonotypes(immdata$data, list(1, 10), .col = "aa")
Choose the first 20 nucleotide clonotype sequences
and their V genes from the "MS1" repertoire to track
tc <- trackClonotypes(immdata$data, list("MS1", 20), .col = "nt+v")

Option 2
Choose clonotypes with amino acid sequences "CASRGLITDTQYF" or "CSASRGSPNEQYF"
tc <- trackClonotypes(immdata$data, c("CASRGLITDTQYF", "CSASRGSPNEQYF"), .col = "aa")

Option 3
Choose the first 10 clonotypes from the first repertoire
with amino acid sequences and V segments
target <- immdata$data[[1]] %>%

select(CDR3.aa, V.name) %>%
head(10)

tc <- trackClonotypes(immdata$data, target)

vis 59

Visualise the output regardless of the chosen option
Therea are three way to visualise it, regulated by the .plot argument
vis(tc, .plot = "smooth")
vis(tc, .plot = "area")
vis(tc, .plot = "line")

Visualising timepoints
First, we create an additional column in the metadata with randomly choosen timepoints:
immdata$meta$Timepoint <- sample(1:length(immdata$data))
immdata$meta
Next, we create a vector with samples in the right order,
according to the "Timepoint" column (from smallest to greatest):
sample_order <- order(immdata$meta$Timepoint)
Sanity check: timepoints are following the right order:
immdata$meta$Timepoint[sample_order]
Samples, sorted by the timepoints:
immdata$meta$Sample[sample_order]
And finally, we visualise the data:
vis(tc, .order = sample_order)

vis One function to visualise them all

Description

Output from every function in immunarch can be visualised with a single function - vis. The
vis automatically detects the type of the data and draws a proper visualisation. For example,
output from the repOverlap function will be identified as repertoire overlap values and respective
visualisation will be chosen without any additional arguments. See "Details" for the list of available
visualisations.

Usage

vis(.data, ...)

Arguments

.data Pass the output from any immunarch analysis tool to vis().

... Any other arguments, see the "Details" section for specific visualisation func-
tions.

Details

List of available visualisations for different kinds of data.

Basic analysis:

- Exploratory analysis results (from repExplore) - see vis.immunr_exp_vol;

- Clonality statistics (from repClonality) - see vis.immunr_homeo.

60 vis

Overlaps and public clonotypes:

- Overlaps (from repOverlap) using heatmaps, circos plots, polar area plots - see vis.immunr_ov_matrix;

- Overlap clustering (from repOverlapAnalysis) - see vis.immunr_hclust;

- Repertoire incremental overlaps (from repOverlap) - see vis.immunr_inc_overlap;

- Public repertoire abundance (from pubRep) - vis vis.immunr_public_repertoire.

Gene usage:

- Gene usage statistics (from geneUsage) using bar plots, box plots - see vis.immunr_gene_usage;

- Gene usage distances (from geneUsageAnalysis) using heatmaps, circos plots, polar area plots -
see vis.immunr_ov_matrix;

- Gene usage clustering (from geneUsageAnalysis) - see vis.immunr_hclust.

Diversity estimation:

- Diversity estimations (from repDiversity) - see vis.immunr_chao1.

BCR analysis:

- Clonal tree (from repClonalFamily) - see vis.clonal_family and vis.clonal_family_tree.

Advanced analysis:

- Repertoire dynamics (from trackClonotypes) - see vis.immunr_dynamics;

- Sequence logo plots of amino acid distributions (from kmer_profile) - see vis_seqlogo;

- Kmers distributions (from getKmers) - see vis.immunr_kmer_table;

- Mutation networks (from mutationNetwork) - Work In Progress on vis.immunr_mutation_network;

- CDR3 amino acid properties, e.g., biophysical (from cdrProp) - Work In Progress on vis.immunr_cdr_prop.

Additionaly, we provide a wrapper functions for visualisations of common data types:

- Any data frames or matrices using heatmaps - see vis_heatmap and vis_heatmap2;

- Any data frames or matrices using circos plots - see vis_circos.

Value

A ggplot2, pheatmap or circlize object.

See Also

fixVis for precise manipulation of plots.

Examples

Load the test data
data(immdata)

Compute and visualise:
ov <- repOverlap(immdata$data)
vis(ov)

gu <- geneUsage(immdata$data)
vis(gu)

vis.clonal_family 61

dv <- repDiversity(immdata$data)
vis(dv)

vis.clonal_family Visualise clonal family tree: wrapper for calling on the entire repClon-
alFamily output

Description

Visualise clonal family tree: wrapper for calling on the entire repClonalFamily output

Usage

S3 method for class 'clonal_family'
vis(.data, ...)

Arguments

.data Clonal families from 1 or multiple samples: repClonalFamily output.

... Not used here.

Value

A ggraph object.

Examples

data(bcrdata)
bcr_data <- bcrdata$data

clonal_family <- bcr_data %>%
seqCluster(seqDist(bcr_data), .fixed_threshold = 3) %>%
repGermline(.threads = 1) %>%
repAlignLineage(.min_lineage_sequences = 2, .align_threads = 2, .nofail = TRUE) %>%
repClonalFamily(.threads = 1, .nofail = TRUE) %>%
vis()

62 vis.clonal_family_tree

vis.clonal_family_tree

Visualise clonal family tree

Description

Visualise clonal family tree

Usage

S3 method for class 'clonal_family_tree'
vis(.data, ...)

Arguments

.data Single clonal family tree data from 1 cluster: 1 element from TreeStats column
from repClonalFamily output.

... Not used here.

Value

A ggraph object.

Examples

data(bcrdata)
bcr_data <- bcrdata$data

clonal_family <- bcr_data %>%
seqCluster(seqDist(bcr_data), .fixed_threshold = 3) %>%
repGermline(.threads = 1) %>%
repAlignLineage(.min_lineage_sequences = 2, .align_threads = 2, .nofail = TRUE) %>%
repClonalFamily(.threads = 1, .nofail = TRUE)

This condition can be omitted; it prevents the example from crashing
when ClustalW or PHYLIP are not installed
if (!("step_failure_ignored" %in% class(clonal_family))) {

vis(clonal_family[["full_clones"]][["TreeStats"]][[2]])
}

vis.immunr_chao1 63

vis.immunr_chao1 Visualise diversity.

Description

An utility function to visualise the output from repDiversity.

Usage

S3 method for class 'immunr_chao1'
vis(
.data,
.by = NA,
.meta = NA,
.errorbars = c(0.025, 0.975),
.errorbars.off = FALSE,
.points = TRUE,
.test = TRUE,
.signif.label.size = 3.5,
...

)

Arguments

.data Output from repDiversity.

.by Pass NA if you want to plot samples without grouping.
You can pass a character vector with one or several column names from ".meta"
to group your data before plotting. In this case you should provide ".meta".
You can pass a character vector that exactly matches the number of samples in
your data, each value should correspond to a sample’s property. It will be used
to group data based on the values provided. Note that in this case you should
pass NA to ".meta".

.meta A metadata object. An R dataframe with sample names and their properties,
such as age, serostatus or hla.

.errorbars A numeric vector of length two with quantiles for error bars on sectors. Disabled
if ".errorbars.off" is TRUE.

.errorbars.off If TRUE then plot CI bars for distances between each group. Disabled if no
group passed to the ".by" argument.

.points A logical value defining whether points will be visualised or not.

.test A logical vector whether statistical tests should be applied. See "Details" for
more information.

.signif.label.size

An integer value defining the size of text for p-value.

... Not used here.

64 vis.immunr_clonal_prop

Details

If data is grouped, then statistical tests for comparing means of groups will be performed, un-
less .test = FALSE is supplied. In case there are only two groups, the Wilcoxon rank sum test
(https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test) is performed (R function wilcox.test
with an argument exact = FALSE) for testing if there is a difference in mean rank values between two
groups. In case there more than two groups, the Kruskal-Wallis test (https://en.wikipedia.org/wiki/Kruskal
A significant Kruskal-Wallis test indicates that at least one sample stochastically dominates one
other sample. Adjusted for multiple comparisons P-values are plotted on the top of groups. P-value
adjusting is done using the Holm method (https://en.wikipedia.org/wiki/Holm You can execute the
command ?p.adjust in the R console to see more.

Value

A ggplot2 object.

See Also

repDiversity vis

Examples

data(immdata)
dv <- repDiversity(immdata$data, "chao1")
vis(dv)

vis.immunr_clonal_prop

Visualise results of the clonality analysis

Description

An utility function to visualise the output from repClonality.

Usage

S3 method for class 'immunr_clonal_prop'
vis(
.data,
.by = NA,
.meta = NA,
.errorbars = c(0.025, 0.975),
.errorbars.off = FALSE,
.points = TRUE,
.test = TRUE,
.signif.label.size = 3.5,
...

)

vis.immunr_clonal_prop 65

Arguments

.data Output from repClonality.

.by Pass NA if you want to plot samples without grouping.
You can pass a character vector with one or several column names from ".meta"
to group your data before plotting. In this case you should provide ".meta".
You can pass a character vector that exactly matches the number of samples in
your data, each value should correspond to a sample’s property. It will be used
to group data based on the values provided. Note that in this case you should
pass NA to ".meta".

.meta A metadata object. An R dataframe with sample names and their properties,
such as age, serostatus or hla.

.errorbars A numeric vector of length two with quantiles for error bars on sectors. Disabled
if ".errorbars.off" is TRUE.

.errorbars.off If TRUE then plot CI bars for distances between each group. Disabled if no
group passed to the ".by" argument.

.points A logical value defining whether points will be visualised or not.

.test A logical vector whether statistical tests should be applied. See "Details" for
more information.

.signif.label.size

An integer value defining the size of text for p-value.

... Not used here.

Details

If data is grouped, then statistical tests for comparing means of groups will be performed, un-
less .test = FALSE is supplied. In case there are only two groups, the Wilcoxon rank sum test
(https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test) is performed (R function wilcox.test
with an argument exact = FALSE) for testing if there is a difference in mean rank values between two
groups. In case there more than two groups, the Kruskal-Wallis test (https://en.wikipedia.org/wiki/Kruskal
A significant Kruskal-Wallis test indicates that at least one sample stochastically dominates one
other sample. Adjusted for multiple comparisons P-values are plotted on the top of groups. P-value
adjusting is done using the Holm method (https://en.wikipedia.org/wiki/Holm You can execute the
command ?p.adjust in the R console to see more.

Value

A ggplot2 object.

See Also

repClonality vis

Examples

data(immdata)
clp <- repClonality(immdata$data, "clonal.prop")

66 vis.immunr_dynamics

vis(clp)

hom <- repClonality(immdata$data, "homeo")
Remove p values and points from the plot
vis(hom, .by = "Status", .meta = immdata$meta, .test = FALSE, .points = FALSE)

vis.immunr_dynamics Visualise clonotype dynamics

Description

Visualise clonotype dynamics

Usage

S3 method for class 'immunr_dynamics'
vis(.data, .plot = c("smooth", "area", "line"), .order = NA, .log = FALSE, ...)

Arguments

.data Output from the trackClonotypes function.

.plot Character. Either "smooth", "area" or "line". Each specifies a type of plot for
visualisation of clonotype dynamics.

.order Numeric or character vector. Specifies the order to samples, e.g., it used for
ordering samples by timepoints. Either See "Examples" below for more details.

.log Logical. If TRUE then use log-scale for the frequency axis.

... Not used here.

Value

A ggplot2 object.

Examples

Load an example data that comes with immunarch
data(immdata)

Make the data smaller in order to speed up the examples
immdata$data <- immdata$data[c(1, 2, 3, 7, 8, 9)]
immdata$meta <- immdata$meta[c(1, 2, 3, 7, 8, 9),]

Option 1
Choose the first 10 amino acid clonotype sequences
from the first repertoire to track
tc <- trackClonotypes(immdata$data, list(1, 10), .col = "aa")
Choose the first 20 nucleotide clonotype sequences
and their V genes from the "MS1" repertoire to track
tc <- trackClonotypes(immdata$data, list("MS1", 20), .col = "nt+v")

vis.immunr_exp_vol 67

Option 2
Choose clonotypes with amino acid sequences "CASRGLITDTQYF" or "CSASRGSPNEQYF"
tc <- trackClonotypes(immdata$data, c("CASRGLITDTQYF", "CSASRGSPNEQYF"), .col = "aa")

Option 3
Choose the first 10 clonotypes from the first repertoire
with amino acid sequences and V segments
target <- immdata$data[[1]] %>%

select(CDR3.aa, V.name) %>%
head(10)

tc <- trackClonotypes(immdata$data, target)

Visualise the output regardless of the chosen option
Therea are three way to visualise it, regulated by the .plot argument
vis(tc, .plot = "smooth")
vis(tc, .plot = "area")
vis(tc, .plot = "line")

Visualising timepoints
First, we create an additional column in the metadata with randomly choosen timepoints:
immdata$meta$Timepoint <- sample(1:length(immdata$data))
immdata$meta
Next, we create a vector with samples in the right order,
according to the "Timepoint" column (from smallest to greatest):
sample_order <- order(immdata$meta$Timepoint)
Sanity check: timepoints are following the right order:
immdata$meta$Timepoint[sample_order]
Samples, sorted by the timepoints:
immdata$meta$Sample[sample_order]
And finally, we visualise the data:
vis(tc, .order = sample_order)

vis.immunr_exp_vol Visualise results of the exploratory analysis

Description

An utility function to visualise the output from repExplore.

Usage

S3 method for class 'immunr_exp_vol'
vis(
.data,
.by = NA,
.meta = NA,
.errorbars = c(0.025, 0.975),
.errorbars.off = FALSE,
.points = TRUE,

68 vis.immunr_exp_vol

.test = TRUE,

.signif.label.size = 3.5,

...
)

Arguments

.data Output from repExplore.

.by Pass NA if you want to plot samples without grouping.
You can pass a character vector with one or several column names from ".meta"
to group your data before plotting. In this case you should provide ".meta".
You can pass a character vector that exactly matches the number of samples in
your data, each value should correspond to a sample’s property. It will be used
to group data based on the values provided. Note that in this case you should
pass NA to ".meta".

.meta A metadata object. An R dataframe with sample names and their properties,
such as age, serostatus or hla.

.errorbars A numeric vector of length two with quantiles for error bars on sectors. Disabled
if ".errorbars.off" is TRUE.

.errorbars.off If TRUE then plot CI bars for distances between each group. Disabled if no
group passed to the ".by" argument.

.points A logical value defining whether points will be visualised or not.

.test A logical vector whether statistical tests should be applied. See "Details" for
more information.

.signif.label.size

An integer value defining the size of text for p-value.

... Not used here.

Details

If data is grouped, then statistical tests for comparing means of groups will be performed, un-
less .test = FALSE is supplied. In case there are only two groups, the Wilcoxon rank sum test
(https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test) is performed (R function wilcox.test
with an argument exact = FALSE) for testing if there is a difference in mean rank values between two
groups. In case there more than two groups, the Kruskal-Wallis test (https://en.wikipedia.org/wiki/Kruskal
A significant Kruskal-Wallis test indicates that at least one sample stochastically dominates one
other sample. Adjusted for multiple comparisons P-values are plotted on the top of groups. P-value
adjusting is done using the Holm method (https://en.wikipedia.org/wiki/Holm You can execute the
command ?p.adjust in the R console to see more.

Value

A ggplot2 object.

See Also

repExplore vis

vis.immunr_gene_usage 69

Examples

data(immdata)
repExplore(immdata$data, "volume") %>% vis()
repExplore(immdata$data, "count") %>% vis()
repExplore(immdata$data, "len") %>% vis()
repExplore(immdata$data, "clones") %>% vis()

vis.immunr_gene_usage Histograms and boxplots (general case / gene usage)

Description

Visualise distributions of genes using heatmaps or other plots.

Usage

S3 method for class 'immunr_gene_usage'
vis(.data, .plot = c("hist", "box", "heatmap", "heatmap2", "circos"), ...)

Arguments

.data Output from the geneUsage function.

.plot String specifying the plot type:
- "hist" for histograms using vis_hist;
- "heatmap" for heatmaps using vis_heatmap;
- "heatmap2" for heatmaps using vis_heatmap2;
- "circos" for circos plots using vis_circos.

... Other arguments passed to corresponding functions depending on the plot type:
- "hist" - passes arguments to vis_hist;
- "box" - passes arguments to vis_box;
- "heatmap" - passes arguments to vis_heatmap;
- "heatmap2" - passes arguments to vis_heatmap2 and heatmap from the "pheatmap"
package;
- "circos" - passes arguments to vis_circos and chordDiagram from the "circlize"
package.

Value

A ggplot2 object, pheatmap or circlize object.

See Also

geneUsage

70 vis.immunr_hclust

Examples

data(immdata)

gu <- geneUsage(immdata$data[[1]])
vis(gu)

gu <- geneUsage(immdata$data)
vis(gu, .by = "Status", .meta = immdata$meta)
vis(gu, "box", .by = "Status", .meta = immdata$meta)

vis.immunr_hclust Visualisation of hierarchical clustering

Description

Visualisation of the results of hierarchical clustering. For other clustering visualisations see vis.immunr_kmeans.

Usage

S3 method for class 'immunr_hclust'
vis(.data, .rect = FALSE, .plot = c("clust", "best"), ...)

Arguments

.data Clustering results from repOverlapAnalysis or geneUsageAnalysis.

.rect Passed to fviz_dend - whether to add a rectangle around groups.

.plot A character vector of length one or two specifying which plots to visualise. If
"clust" then plot only the clustering. If "best" then plot the number of optimal
clusters. If both then plot both.

... Not used here.

Value

Ggplot2 objects inside the patchwork container.

See Also

vis, repOverlapAnalysis, geneUsageAnalysis

Examples

data(immdata)
ov <- repOverlap(immdata$data)
repOverlapAnalysis(ov, "mds+hclust") %>% vis()

vis.immunr_inc_overlap 71

vis.immunr_inc_overlap

Visualise incremental overlaps

Description

Visualise incremental overlaps

Usage

S3 method for class 'immunr_inc_overlap'
vis(.data, .target = 1, .grid = FALSE, .ncol = 2, ...)

Arguments

.data Output from the repOverlap function that uses "top" methods.

.target Index of a repertoire to plot. Omitted if .grid is TRUE.

.grid Logical. If TRUE then plot all similarities in a grid.

.ncol Numeric. Number of columns in the resulting grid.

... Not used here.

Value

A ggplot2 object.

See Also

repOverlap

Examples

data(immdata)
tmp <- repOverlap(immdata$data[1:4], "inc+overlap", .verbose.inc = FALSE, .verbose = FALSE)
vis(tmp, .target = 1)
vis(tmp, .grid = TRUE)

72 vis.immunr_kmeans

vis.immunr_kmeans Visualisation of K-means and DBSCAN clustering

Description

Visualisation of the results of K-means and DBSCAN clustering. For hierarhical clustering visual-
isations see vis.immunr_hclust.

Usage

S3 method for class 'immunr_kmeans'
vis(
.data,
.point = TRUE,
.text = TRUE,
.ellipse = TRUE,
.point.size = 2,
.text.size = 10,
.plot = c("clust", "best"),
...

)

Arguments

.data Clustering results from repOverlapAnalysis or geneUsageAnalysis.

.point If TRUE then plot sample points. Passed to fviz_cluster.

.text If TRUE then plot text labels. Passed to fviz_cluster.

.ellipse If TRUE then plot ellipses around all samples. Passed to "ellipse" from fviz_cluster.

.point.size Size of points, passed to "pointsize" from fviz_cluster.

.text.size Size of text labels, passed to labelsize from fviz_cluster.

.plot A character vector of length one or two specifying which plots to visualise. If
"clust" then plot only the clustering. If "best" then plot the number of optimal
clusters. If both then plot both.

... Not used here.

Value

Ggplot2 objects inside the pathwork container.

See Also

vis, repOverlapAnalysis, geneUsageAnalysis

vis.immunr_kmer_table 73

Examples

data(immdata)
ov <- repOverlap(immdata$data)
repOverlapAnalysis(ov, "mds+kmeans") %>% vis()

vis.immunr_kmer_table Most frequent kmers visualisation.

Description

Plot a distribution (bar plot) of the most frequent kmers in a data.

Usage

S3 method for class 'immunr_kmer_table'
vis(
.data,
.head = 100,
.position = c("stack", "dodge", "fill"),
.log = FALSE,
...

)

Arguments

.data Data frame with two columns "Kmers" and "Count" or a list with such data
frames. See Examples.

.head Number of the most frequent kmers to choose for plotting from each data frame.

.position Character vector of length 1. Position of bars for each kmers. Value for the
ggplot2 argument position.

.log Logical. If TRUE then plot log-scaled plots.

... Not used here.

Value

A ggplot2 object.

See Also

get.kmers

74 vis.immunr_mds

Examples

Load necessary data and package.
data(immdata)
Get 5-mers.
imm.km <- getKmers(immdata$data[[1]], 5)
Plots for kmer proportions in each data frame in immdata.
p1 <- vis(imm.km, .position = "stack")
p2 <- vis(imm.km, .position = "fill")
p1 + p2

vis.immunr_mds PCA / MDS / tSNE visualisation (mainly overlap / gene usage)

Description

PCA / MDS / tSNE visualisation (mainly overlap / gene usage)

Usage

S3 method for class 'immunr_mds'
vis(
.data,
.by = NA,
.meta = NA,
.point = TRUE,
.text = TRUE,
.ellipse = TRUE,
.point.size = 2,
.text.size = 4,
...

)

Arguments

.data Output from analysis functions such as geneUsageAnalysis or immunr_pca, im-
munr_mds or immunr_tsne.

.by Pass NA if you want to plot samples without grouping.
You can pass a character vector with one or several column names from ".meta"
to group your data before plotting. In this case you should provide ".meta".
You can pass a character vector that exactly matches the number of samples in
your data, each value should correspond to a sample’s property. It will be used
to group data based on the values provided. Note that in this case you should
pass NA to ".meta".

.meta A metadata object. An R dataframe with sample names and their properties,
such as age, serostatus or hla.

.point Logical. If TRUE then plot points corresponding to objects.

vis.immunr_ov_matrix 75

.text Logical. If TRUE then plot sample names.

.ellipse Logical. If TRUE then plot ellipses around clusters of grouped samples.

.point.size Numeric. A size of points to plot.

.text.size Numeric. A size of sample names’ labels.

... Not used here.

Details

Other visualisation methods:

- PCA - vis.immunr_pca

- MDS - vis.immunr_mds

- tSNE - vis.immunr_tsne

Value

A ggplot2 object.

Examples

data(immdata)
ov <- repOverlap(immdata$data)
repOverlapAnalysis(ov, "mds") %>% vis()

vis.immunr_ov_matrix Repertoire overlap and gene usage visualisations

Description

Visualises matrices with overlap values or gene usage distances among samples. For details see the
links below.

Usage

S3 method for class 'immunr_ov_matrix'
vis(.data, .plot = c("heatmap", "heatmap2", "circos"), ...)

Arguments

.data Output from repOverlap or geneUsageAnalysis.

.plot A string specifying the plot type:
- "heatmap" for heatmaps using vis_heatmap;
- "heatmap2" for heatmaps using vis_heatmap2;
- "circos" for circos plots using vis_circos;

76 vis.immunr_public_repertoire

... Other arguments are passed through to the underlying plotting function:
- "heatmap" - passes arguments to vis_heatmap;
- "heatmap2" - passes arguments to vis_heatmap2 and heatmap from the "pheatmap"
package;
- "circos" - passes arguments to vis_circos and chordDiagram from the "circlize"
package;

Value

A ggplot2, pheatmap or circlize object.

Examples

data(immdata)
ov <- repOverlap(immdata$data)
vis(ov)
vis(ov, "heatmap")
vis(ov, "heatmap2")
vis(ov, "circos")

vis.immunr_public_repertoire

Public repertoire visualisation

Description

Public repertoire visualisation

Usage

S3 method for class 'immunr_public_repertoire'
vis(.data, .plot = c("freq", "clonotypes"), ...)

Arguments

.data Public repertoire, an output from pubRep.

.plot A string specifying the plot type:
- "freq" for visualisation of the distribution of occurrences of clonotypes and
their frequencies using vis_public_frequencies.
- "clonotypes" for visualisation of public clonotype frequenciy correlations be-
tween pairs of samples using vis_public_clonotypes

... Further arguments passed vis_public_frequencies or vis_public_clonotypes, de-
pending on the ".plot" argument.

Value

A ggplot2 object.

vis.immunr_public_statistics 77

Examples

data(immdata)
immdata$data <- lapply(immdata$data, head, 300)
pr <- pubRep(immdata$data, .verbose = FALSE)
vis(pr, "freq")
vis(pr, "freq", .type = "none")

vis(pr, "clonotypes", 1, 2)

vis.immunr_public_statistics

Visualise sharing of clonotypes among samples

Description

Visualise public clonotype frequencies.

Usage

S3 method for class 'immunr_public_statistics'
vis(.data, ...)

Arguments

.data Public repertoire - an output from the pubRep function.

... Other arguments passsed directly to upset.

Value

A ggplot2 object.

Examples

data(immdata)
immdata$data <- lapply(immdata$data, head, 2000)
pr <- pubRep(immdata$data, .verbose = FALSE)
pubRepStatistics(pr) %>% vis()

78 vis_bar

vis.step_failure_ignored

Handler for .nofail argument of pipeline steps that prevents examples
from crashing on computers where certain dependencies are not in-
stalled

Description

Handler for .nofail argument of pipeline steps that prevents examples from crashing on computers
where certain dependencies are not installed

Usage

S3 method for class 'step_failure_ignored'
vis(.data, ...)

Arguments

.data Not used here.

... Not used here.

Value

An empty object with "step_failure_ignored" class.

vis_bar Bar plots

Description

Bar plots

Usage

vis_bar(
.data,
.by = NA,
.meta = NA,
.errorbars = c(0.025, 0.975),
.errorbars.off = FALSE,
.stack = FALSE,
.points = TRUE,
.test = TRUE,
.signif.label.size = 3.5,
.errorbar.width = 0.2,

vis_bar 79

.defgroupby = "Sample",

.grouping.var = "Group",

.labs = c("X", "Y"),

.title = "Barplot (.title argument)",

.subtitle = "Subtitle (.subtitle argument)",

.legend = NA,

.leg.title = "Legend (.leg.title argument)",

.legend.pos = "right",

.rotate_x = 90
)

Arguments

.data Data to visualise.

.by Pass NA if you want to plot samples without grouping.
You can pass a character vector with one or several column names from ".meta"
to group your data before plotting. In this case you should provide ".meta".
You can pass a character vector that exactly matches the number of samples in
your data, each value should correspond to a sample’s property. It will be used
to group data based on the values provided. Note that in this case you should
pass NA to ".meta".

.meta A metadata object. An R dataframe with sample names and their properties,
such as age, serostatus or hla.

.errorbars A numeric vector of length two with quantiles for error bars on sectors. Disabled
if ".errorbars.off" is TRUE.

.errorbars.off If TRUE then plot CI bars for distances between each group. Disabled if no
group passed to the ".by" argument.

.stack If TRUE and .errorbars.off is TRUE then plot stacked bar plots for each Group
or Sample

.points A logical value defining whether points will be visualised or not.

.test A logical vector whether statistical tests should be applied. See "Details" for
more information.

.signif.label.size

An integer value defining the size of text for p-value.
.errorbar.width

Numeric. Width for error bars.
.defgroupby A name for the column with sample names.
.grouping.var A name for the column to group by.
.labs A character vector of length two specifying names for x-axis and y-axis.
.title The text for the plot’s title.
.subtitle The text for the plot’s subtitle.
.legend If TRUE then displays a legend, otherwise removes legend from the plot.
.leg.title The text for the plots’s legend. Provide NULL to remove the legend’s title com-

pletely.
.legend.pos Positions of the legend: either "top", "bottom", "left" or "right".
.rotate_x How much the x tick text should be rotated? In angles.

80 vis_box

Value

A ggplot2 object.

Examples

vis_bar(data.frame(Sample = c("A", "B", "C"), Value = c(1, 2, 3)))

vis_box Flexible box-plots for visualisation of distributions

Description

Visualisation of distributions using ggplot2-based boxplots.

Usage

vis_box(
.data,
.by = NA,
.meta = NA,
.melt = TRUE,
.points = TRUE,
.test = TRUE,
.signif.label.size = 3.5,
.defgroupby = "Sample",
.grouping.var = "Group",
.labs = c("X", "Y"),
.title = "Boxplot (.title argument)",
.subtitle = "Subtitle (.subtitle argument)",
.legend = NA,
.leg.title = "Legend (.leg.title argument)",
.legend.pos = "right"

)

Arguments

.data Input matrix or data frame.

.by Pass NA if you want to plot samples without grouping.
You can pass a character vector with one or several column names from ".meta"
to group your data before plotting. In this case you should provide ".meta".
You can pass a character vector that exactly matches the number of samples in
your data, each value should correspond to a sample’s property. It will be used
to group data based on the values provided. Note that in this case you should
pass NA to ".meta".

.meta A metadata object. An R dataframe with sample names and their properties,
such as age, serostatus or hla.

vis_circos 81

.melt If TRUE then apply melt to the ".data" before plotting. In this case ".data" is
supposed to be a data frame with the first character column reserved for names
of genes and other numeric columns reserved to counts or frequencies of genes.
Each numeric column should be associated with a specific repertoire sample.

.points A logical value defining whether points will be visualised or not.

.test A logical vector whether statistical tests should be applied. See "Details" for
more information.

.signif.label.size

An integer value defining the size of text for p-value.

.defgroupby A name for the column with sample names.

.grouping.var A name for the column to group by.

.labs Character vector of length two with names for x-axis and y-axis, respectively.

.title The text for the title of the plot.

.subtitle The The text for the plot’s subtitle.

.legend If TRUE then displays a legend, otherwise removes legend from the plot.

.leg.title The The text for the plots’s legend. Provide NULL to remove the legend’s title
completely.

.legend.pos Positions of the legend: either "top", "bottom", "left" or "right".

Value

A ggplot2 object.

See Also

vis.immunr_gene_usage, geneUsage

Examples

vis_box(data.frame(Sample = sample(c("A", "B", "C"), 100, TRUE), Value = rnorm(100)), .melt = FALSE)

vis_circos Visualisation of matrices using circos plots

Description

Visualise matrices with the chordDiagram function from the circlize package.

Usage

vis_circos(.data, .title = NULL, ...)

82 vis_heatmap

Arguments

.data Input matrix.

.title The The text for the title of the plot.

... Other arguments passed to chordDiagram from the ’circlize’ package.

Value

A circlize object.

See Also

vis, repOverlap.

Examples

data(immdata)
ov <- repOverlap(immdata$data)
vis(ov, .plot = "circos")

vis_heatmap Visualisation of matrices and data frames using ggplo2-based
heatmaps

Description

Fast and easy visualisations of matrices or data frames with functions based on the ggplot2 package.

Usage

vis_heatmap(
.data,
.text = TRUE,
.scientific = FALSE,
.signif.digits = 2,
.text.size = 4,
.axis.text.size = NULL,
.labs = c("Sample", "Sample"),
.title = "Overlap",
.leg.title = "Overlap values",
.legend = TRUE,
.na.value = NA,
.transpose = FALSE,
...

)

vis_heatmap 83

Arguments

.data Input object: a matrix or a data frame.

If matrix: column names and row names (if presented) will be used as names
for labs.

If data frame: the first column will be used for row names and removed from the
data. Other columns will be used for values in the heatmap.

.text If TRUE then plots values in the heatmap cells. If FALSE does not plot values,
just plot coloured cells instead.

.scientific If TRUE then uses the scientific notation for numbers (e.g., "2.0e+2").

.signif.digits Number of significant digits to display on plot.

.text.size Size of text in the cells of heatmap.

.axis.text.size

Size of text on the axis labels.

.labs A character vector of length two with names for x-axis and y-axis, respectively.

.title The The text for the plot’s title.

.leg.title The The text for the plots’s legend. Provide NULL to remove the legend’s title
completely.

.legend If TRUE then displays a legend, otherwise removes the legend from the plot.

.na.value Replace NA values with this value. By default they remain NA.

.transpose Logical. If TRUE then switch rows and columns.

... Other passed arguments.

Value

A ggplot2 object.

See Also

vis, repOverlap.

Examples

data(immdata)
ov <- repOverlap(immdata$data)
vis_heatmap(ov)
gu <- geneUsage(immdata$data, "hs.trbj")
vis_heatmap(gu)

84 vis_heatmap2

vis_heatmap2 Visualisation of matrices using pheatmap-based heatmaps

Description

Visualise matrices with the functions based on the pheatmap package with minimum amount of
arguments.

Usage

vis_heatmap2(
.data,
.meta = NA,
.by = NA,
.title = NA,
.color = colorRampPalette(c("#67001f", "#d6604d", "#f7f7f7", "#4393c3",
"#053061"))(1024),

...
)

Arguments

.data Input matrix. Column names and row names (if presented) will be used as names
for labs.

.meta A metadata object. An R dataframe with sample names and their properties,
such as age, serostatus or hla.

.by Set NA if you want to plot samples without grouping.

.title The text for the plot’s title (same as the "main" argument in pheatmap).

.color A vector specifying the colors (same as the "color" argument in pheatmap). Pass
NA to use the default pheatmap colors.

... Other arguments for the pheatmap function.

Value

A pheatmap object.

See Also

vis, repOverlap

Examples

data(immdata)
ov <- repOverlap(immdata$data)
vis_heatmap2(ov)

vis_hist 85

vis_hist Visualisation of distributions using histograms

Description

Visualisation of distributions using ggplot2-based histograms.

Usage

vis_hist(
.data,
.by = NA,
.meta = NA,
.title = "Gene usage",
.ncol = NA,
.points = TRUE,
.test = TRUE,
.coord.flip = FALSE,
.grid = FALSE,
.labs = c("Gene", NA),
.melt = TRUE,
.legend = NA,
.add.layer = NULL,
...

)

Arguments

.data Input matrix or data frame.

.by Pass NA if you want to plot samples without grouping.
You can pass a character vector with one or several column names from ".meta"
to group your data before plotting. In this case you should provide ".meta".
You can pass a character vector that exactly matches the number of samples in
your data, each value should correspond to a sample’s property. It will be used
to group data based on the values provided. Note that in this case you should
pass NA to ".meta".

.meta A metadata object. An R dataframe with sample names and their properties,
such as age, serostatus or hla.

.title The text for the title of the plot.

.ncol A number of columns to display. Provide NA (by default) if you want the func-
tion to automatically detect the optimal number of columns.

.points A logical value defining whether points will be visualised or not.

.test A logical vector whether statistical tests should be applied. See "Details" for
more information.

.coord.flip If TRUE then swap x- and y-axes.

86 vis_hist

.grid If TRUE then plot separate visualisations for each sample.

.labs A character vector of length two with names for x-axis and y-axis, respectively.

.melt If TRUE then apply melt to the ".data" before plotting. In this case ".data" is
supposed to be a data frame with the first character column reserved for names
of genes and other numeric columns reserved to counts or frequencies of genes.
Each numeric column should be associated with a specific repertoire sample.

.legend If TRUE then plots the legend. If FALSE removes the legend from the plot. If
NA automatically detects the best way to display legend.

.add.layer Addditional ggplot2 layers, that added to each plot in the output plot or grid of
plots.

... Is not used here.

Details

If data is grouped, then statistical tests for comparing means of groups will be performed, un-
less .test = FALSE is supplied. In case there are only two groups, the Wilcoxon rank sum test
(https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test) is performed (R function wilcox.test
with an argument exact = FALSE) for testing if there is a difference in mean rank values between two
groups. In case there more than two groups, the Kruskal-Wallis test (https://en.wikipedia.org/wiki/Kruskal
A significant Kruskal-Wallis test indicates that at least one sample stochastically dominates one
other sample. Adjusted for multiple comparisons P-values are plotted on the top of groups. P-value
adjusting is done using the Holm method (https://en.wikipedia.org/wiki/Holm You can execute the
command ?p.adjust in the R console to see more.

Value

A ggplot2 object.

See Also

vis.immunr_gene_usage, geneUsage

Examples

data(immdata)
imm_gu <- geneUsage(immdata$data[[1]])
vis(imm_gu,

.plot = "hist", .add.layer =
theme(axis.text.x = element_text(angle = 75, vjust = 1))

)
imm_gu <- geneUsage(immdata$data[1:4])
vis(imm_gu,

.plot = "hist", .grid = TRUE, .add.layer =
theme(axis.text.x = element_text(angle = 75, vjust = 1))

)

vis_immunr_kmer_profile_main 87

vis_immunr_kmer_profile_main

Visualise kmer profiles

Description

Visualise kmer profiles

Usage

vis_immunr_kmer_profile_main(.data, .plot, ...)

Arguments

.data Kmer data, an output from kmer_profile.

.plot String specifying the plot type:
- "seqlogo" for traditional sequence logo plots using vis_seqlogo;
- "textlogo" for modified approach to sequence logo plots via text labels using
vis_textlogo;

... Other arguments passed to vis_textlogo or vis_seqlogo, depending on the ".plot"
argument.

Value

A ggplot2 object.

Examples

data(immdata)
getKmers(immdata$data[[1]], 5) %>%

kmer_profile() %>%
vis("seqlogo")

vis_public_clonotypes Visualisation of public clonotypes

Description

Visualise correlation of public clonotype frequencies in pairs of repertoires.

88 vis_public_clonotypes

Usage

vis_public_clonotypes(
.data,
.x.rep = NA,
.y.rep = NA,
.title = NA,
.ncol = 3,
.point.size.modif = 1,
.cut.axes = TRUE,
.density = TRUE,
.lm = TRUE,
.radj.size = 3.5

)

Arguments

.data Public repertoire data - an output from the pubRep function.

.x.rep Either indices of samples or character vector of sample names for the x-axis.
Must be of the same length as ".y.rep".

.y.rep Either indices of samples or character vector of sample names for the y-axis.
Must be of the same length as ".x.rep".

.title The text for the title of the plot.

.ncol An integer number of columns to print in the grid of pairs of repertoires.

.point.size.modif

An integer value that is a modifier of the point size. The larger the number, the
larger the points.

.cut.axes If TRUE then axes limits become shorter.

.density If TRUE then displays density plot for distributions of clonotypes for each sam-
ple. If FALSE then removes density plot from the visualisation.

.lm If TRUE then fit a linear model and displays an R adjusted coefficient that shows
how similar samples are in terms of shared clonotypes.

.radj.size An integer value, that defines the size of the The text for the R adjusted coeffi-
cient.

Value

A ggplot2 object.

See Also

pubRep, vis.immunr_public_repertoire

Examples

data(immdata)
pr <- pubRep(immdata$data, .verbose = FALSE)
vis(pr, "clonotypes", 1, 2)

vis_public_frequencies 89

vis_public_frequencies

Public repertoire visualisation

Description

Visualise public clonotype frequencies.

Usage

vis_public_frequencies(
.data,
.by = NA,
.meta = NA,
.type = c("boxplot", "none", "mean")

)

Arguments

.data Public repertoire - an output from the pubRep function.

.by Pass NA if you want to plot samples without grouping.
You can pass a character vector with one or several column names from ".meta"
to group your data before plotting. In this case you should provide ".meta".
You can pass a character vector that exactly matches the number of samples in
your data, each value should correspond to a sample’s property. It will be used
to group data based on the values provided. Note that in this case you should
pass NA to ".meta".

.meta A metadata object. An R dataframe with sample names and their properties,
such as age, serostatus or hla.

.type Character. Either "boxplot" for plotting distributions of frequencies, "none" for
plotting everything, or "mean" for plotting average values only.

Value

A ggplot2 object.

Examples

data(immdata)
immdata$data <- lapply(immdata$data, head, 500)
pr <- pubRep(immdata$data, .verbose = FALSE)
vis(pr, "freq", .type = "boxplot")
vis(pr, "freq", .type = "none")
vis(pr, "freq", .type = "mean")
vis(pr, "freq", .by = "Status", .meta = immdata$meta)

90 vis_textlogo

vis_textlogo Sequence logo plots for amino acid profiles.

Description

Plot sequence logo plots for visualising of amino acid motif sequences / profiles.

‘vis_textlogo‘ plots sequences in a text format - each letter has the same height. Useful when there
are no big differences between occurences of amino acids in the motif.

‘vis_seqlogo‘ is a traditional sequence logo plots. Useful when there are one or two amino acids
with clear differences in their occurrences.

Usage

vis_textlogo(.data, .replace.zero.with.na = TRUE, .width = 0.1, ...)

vis_seqlogo(.data, .scheme = "chemistry", ...)

Arguments

.data Output from the kmer.profile function.

.replace.zero.with.na

if TRUE then replace all zeros with NAs, therefore letters with zero frequency
wont appear at the plot.

.width Width for jitter, i.e., how much points will scatter around the verical line. Pass
0 (zero) to plot points on the straight vertical line for each position.

... Not used here.

.scheme Character. An argumentt passed to geom_logo specifying how to colour sym-
bols.

Value

A ggplot2 object.

See Also

getKmers, kmer_profile

Examples

data(immdata)
kmers <- getKmers(immdata$data[[1]], 5)
ppm <- kmer_profile(kmers, "prob")
vis(ppm, .plot = "text")
vis(ppm, .plot = "seq")

d <- kmer_profile(c("CASLL", "CASSQ", "CASGL"))
vis_textlogo(d)
vis_seqlogo(d)

Index

∗ align_lineage
repAlignLineage, 28

∗ annotation
dbAnnotate, 10
dbLoad, 11

∗ clonality
repClonality, 30
vis.immunr_clonal_prop, 64

∗ datasets
aa_table, 5
bcrdata, 6
immdata, 19
scdata, 48

∗ data
aa_properties, 4
aa_table, 5
bcrdata, 6
gene_segments, 16
immdata, 19
immunr_data_format, 19
scdata, 48

∗ distance
seqDist, 52

∗ diversity
repDiversity, 32
vis.immunr_chao1, 63

∗ dynamics
trackClonotypes, 57
vis.immunr_dynamics, 66

∗ explore
repExplore, 35
vis.immunr_exp_vol, 67

∗ filters
repFilter, 37

∗ fixvis
fixVis, 13

∗ gene_usage
gene_stats, 16
geneUsage, 14

geneUsageAnalysis, 15
vis.immunr_gene_usage, 69

∗ germline
repGermline, 38

∗ io
repLoad, 39
repSave, 46

∗ k-mers
getKmers, 17
split_to_kmers, 55

∗ kmers
vis.immunr_kmer_table, 73
vis_immunr_kmer_profile_main, 87
vis_textlogo, 90

∗ overlap
inc_overlap, 22
repOverlap, 41
repOverlapAnalysis, 44
vis.immunr_inc_overlap, 71
vis.immunr_ov_matrix, 75

∗ phylip
repClonalFamily, 29
vis.clonal_family, 61
vis.clonal_family_tree, 62

∗ post_analysis
immunr_hclust, 20
immunr_pca, 21
vis.immunr_hclust, 70
vis.immunr_kmeans, 72
vis.immunr_mds, 74

∗ preprocessing
bunch_translate, 7
coding, 9
repSample, 45
top, 56

∗ pubrep
public_matrix, 24
pubRep, 25
pubRepApply, 26

91

92 INDEX

pubRepFilter, 27
pubRepStatistics, 27
vis.immunr_public_repertoire, 76
vis.immunr_public_statistics, 77
vis_public_clonotypes, 87
vis_public_frequencies, 89

∗ seq_cluster
seqCluster, 51

∗ single_cell
select_barcodes, 49
select_clusters, 50

∗ somatic_hypermutation
repSomaticHypermutation, 47

∗ utility_private
.quant_column_choice, 4
add_class, 5
check_distribution, 8
group_from_metadata, 18
has_class, 18
matrixdiagcopy, 23
set_pb, 53
switch_type, 56

∗ utility_public
apply_symm, 6
entropy, 12

∗ vis
spectratype, 54
vis, 59
vis_bar, 78
vis_box, 80
vis_circos, 81
vis_heatmap, 82
vis_heatmap2, 84
vis_hist, 85

.quant_column_choice, 4

AA_PROP (aa_properties), 4
aa_prop (aa_properties), 4
aa_properties, 4
AA_TABLE (aa_table), 5
aa_table, 5
AA_TABLE_REVERSED (aa_table), 5
add_class, 5
add_pb (set_pb), 53
apply_asymm (apply_symm), 6
apply_symm, 6
ATCHLEY (aa_properties), 4
atchley (aa_properties), 4

bcrdata, 6
bunch_translate, 7

chao1 (repDiversity), 32
check_distribution, 8
chordDiagram, 69, 76, 81, 82
clonal.prop (repClonality), 30
clonal_proportion, 46
clonal_proportion (repClonality), 30
clonal_space_homeostasis

(repClonality), 30
clonality (repClonality), 30
coding, 9
copy_to, 9, 10, 14, 17, 23, 25, 31, 33, 36, 42,

45, 49, 54, 57
cross_entropy (entropy), 12

data.frame, 9, 10, 14, 17, 23, 25, 28, 31, 33,
36, 38, 39, 42, 45, 49, 51, 52, 54, 57

data.table, 9, 10, 14, 17, 23, 25, 28, 31, 33,
36, 38, 42, 45, 49, 51, 52, 54, 57

dbAnnotate, 10
dbLoad, 10, 11
dbscan, 20, 21
dist, 52
diversity_eco (repDiversity), 32

entropy, 12, 34
exclude (repFilter), 37

fixVis, 13, 60
fviz_cluster, 72
fviz_dend, 70
fviz_nbclust, 20, 21

GENE_SEGMENTS (gene_segments), 16
gene_segments, 16
gene_stats, 16
genes (gene_segments), 16
geneUsage, 14, 15, 41, 60, 69, 81, 86
geneUsageAnalysis, 15, 15, 20, 21, 60, 70,

72, 74, 75
geom_logo, 90
get.kmers (getKmers), 17
get_aliases (geneUsage), 14
get_genes (geneUsage), 14
getKmers, 17, 60, 90
gini_coef (repDiversity), 32
gini_simpson (repDiversity), 32

INDEX 93

group_from_metadata, 18

has_class, 18
hcut, 16, 20, 21, 44
heatmap, 69, 76
hill_numbers (repDiversity), 32

immdata, 19
immunarch_data_format, 9, 10, 14, 17, 23,

25, 29, 31, 33, 36, 38, 42, 45, 49, 51,
52, 54, 57

immunarch_data_format
(immunr_data_format), 19

immunr_data_format, 19, 41
immunr_dbscan, 16, 44
immunr_dbscan (immunr_hclust), 20
immunr_hclust, 20
immunr_kmeans (immunr_hclust), 20
immunr_mds, 74
immunr_mds (immunr_pca), 21
immunr_pca, 21, 74
immunr_tsne, 16, 44, 74
immunr_tsne (immunr_pca), 21
inc_overlap, 22, 43
include (repFilter), 37
inframes (coding), 9
interval (repFilter), 37
inverse_simpson (repDiversity), 32
isoMDS, 21, 22

js_div (entropy), 12

KIDERA (aa_properties), 4
kidera (aa_properties), 4
kl_div (entropy), 12
kmeans, 16, 20, 21, 44
kmer_profile, 60, 87, 90
kmer_profile (split_to_kmers), 55

lessthan (repFilter), 37

makeKmerTable (getKmers), 17
matrixdiagcopy, 23
melt, 81, 86
morethan (repFilter), 37

noncoding (coding), 9

outofframes (coding), 9

pheatmap, 84

prcomp, 21, 22
process_col_argument (switch_type), 56
properties (aa_properties), 4
public_matrix, 24
publicRepertoire (pubRep), 25
publicRepertoireApply (pubRepApply), 26
publicRepertoireFilter (pubRepFilter),

27
pubRep, 24, 25, 27, 28, 60, 76, 77, 88, 89
pubRepApply, 26
pubRepFilter, 27
pubRepStatistics, 27

rare_proportion (repClonality), 30
rarefaction (repDiversity), 32
repAlignLineage, 28
repClonalFamily, 29, 60–62
repClonality, 30, 34, 59, 64, 65
repDiversity, 32, 32, 41, 60, 63, 64
repExplore, 35, 59, 67, 68
repFilter, 37
repGermline, 38
repLoad, 39
repOverlap, 34, 41, 41, 44, 60, 71, 75, 82–84
repOverlapAnalysis, 20, 21, 44, 44, 60, 70,

72
repSample, 45
repSave, 41, 46
repSomaticHypermutation, 47
rmultinom, 46
Rtsne, 21, 22

scdata, 48
segments (gene_segments), 16
select_barcodes, 49, 50
select_clusters, 49, 50
seqCluster, 51
seqDist, 51, 52
set_pb, 53
spectratype, 54
split_to_kmers, 55
switch_type, 56

top, 56
top_proportion (repClonality), 30
trackClonotypes, 57, 60, 66
translate_bunch (bunch_translate), 7

upset, 77

94 INDEX

vis, 43, 44, 59, 64, 65, 68, 70, 72, 82–84
vis.clonal_family, 60, 61
vis.clonal_family_tree, 60, 62
vis.immunr_chao1, 60, 63
vis.immunr_clonal_prop, 64
vis.immunr_dbscan (vis.immunr_kmeans),

72
vis.immunr_div (vis.immunr_chao1), 63
vis.immunr_dxx (vis.immunr_chao1), 63
vis.immunr_dynamics, 60, 66
vis.immunr_exp_clones

(vis.immunr_exp_vol), 67
vis.immunr_exp_count

(vis.immunr_exp_vol), 67
vis.immunr_exp_len

(vis.immunr_exp_vol), 67
vis.immunr_exp_vol, 36, 59, 67
vis.immunr_gene_usage, 60, 69, 81, 86
vis.immunr_ginisimp (vis.immunr_chao1),

63
vis.immunr_gu_matrix

(vis.immunr_ov_matrix), 75
vis.immunr_hclust, 60, 70, 72
vis.immunr_hill (vis.immunr_chao1), 63
vis.immunr_homeo, 59
vis.immunr_homeo

(vis.immunr_clonal_prop), 64
vis.immunr_inc_overlap, 60, 71
vis.immunr_invsimp (vis.immunr_chao1),

63
vis.immunr_kmeans, 70, 72
vis.immunr_kmer_table, 60, 73
vis.immunr_mds, 74, 75
vis.immunr_ov_matrix, 60, 75
vis.immunr_pca, 22, 75
vis.immunr_pca (vis.immunr_mds), 74
vis.immunr_public_repertoire, 60, 76, 88
vis.immunr_public_statistics, 77
vis.immunr_rarefaction

(vis.immunr_chao1), 63
vis.immunr_tail_prop

(vis.immunr_clonal_prop), 64
vis.immunr_top_prop

(vis.immunr_clonal_prop), 64
vis.immunr_tsne, 75
vis.immunr_tsne (vis.immunr_mds), 74
vis.step_failure_ignored, 78
vis_bar, 78

vis_box, 69, 80
vis_circos, 60, 69, 75, 76, 81
vis_heatmap, 60, 69, 75, 76, 82
vis_heatmap2, 60, 69, 75, 76, 84
vis_hist, 69, 85
vis_immunr_kmer_profile_main, 87
vis_public_clonotypes, 76, 87
vis_public_frequencies, 76, 89
vis_seqlogo, 60, 87
vis_seqlogo (vis_textlogo), 90
vis_textlogo, 87, 90

wilcox.test, 64, 65, 68, 86

	.quant_column_choice
	aa_properties
	aa_table
	add_class
	apply_symm
	bcrdata
	bunch_translate
	check_distribution
	coding
	dbAnnotate
	dbLoad
	entropy
	fixVis
	geneUsage
	geneUsageAnalysis
	gene_segments
	gene_stats
	getKmers
	group_from_metadata
	has_class
	immdata
	immunr_data_format
	immunr_hclust
	immunr_pca
	inc_overlap
	matrixdiagcopy
	public_matrix
	pubRep
	pubRepApply
	pubRepFilter
	pubRepStatistics
	repAlignLineage
	repClonalFamily
	repClonality
	repDiversity
	repExplore
	repFilter
	repGermline
	repLoad
	repOverlap
	repOverlapAnalysis
	repSample
	repSave
	repSomaticHypermutation
	scdata
	select_barcodes
	select_clusters
	seqCluster
	seqDist
	set_pb
	spectratype
	split_to_kmers
	switch_type
	top
	trackClonotypes
	vis
	vis.clonal_family
	vis.clonal_family_tree
	vis.immunr_chao1
	vis.immunr_clonal_prop
	vis.immunr_dynamics
	vis.immunr_exp_vol
	vis.immunr_gene_usage
	vis.immunr_hclust
	vis.immunr_inc_overlap
	vis.immunr_kmeans
	vis.immunr_kmer_table
	vis.immunr_mds
	vis.immunr_ov_matrix
	vis.immunr_public_repertoire
	vis.immunr_public_statistics
	vis.step_failure_ignored
	vis_bar
	vis_box
	vis_circos
	vis_heatmap
	vis_heatmap2
	vis_hist
	vis_immunr_kmer_profile_main
	vis_public_clonotypes
	vis_public_frequencies
	vis_textlogo
	Index

